Acknowledgement
The authors acknowledge full gratitude to Universiti Tun Hussein Onn Malaysia (UTHM) and Ministry of Higher Education through fundamental research grant scheme VOT. NO. FRGS /1/2018/TK01/UTHM/02/3. In addition, this research activity was also supported and funded by Malaysian Technical University Network (MTUN) Grant Vot K122 and Industry Grant PLUS BERHAD (M007). Indeed, the authors would like to thank their support and cooperation in this research. Moreover, the authors extend their thanks to Shimadzu Corporation, Alex Corporation (M) Sdn Bhd (KS Wong) and Volume Graphic Software for their assistance and collaboration during the analysis of the X-Ray CT imaging using Shimadzu Inspection System.
References
- Abubakar, A.U., Akcaoglu, T. and Marar, K. (2018), "P-value significance level test for high-performance steel fiber concrete (HPSFC)", Comput. Concrete, Int. J., 21(5), 485-493. https://doi.org/10.12989/cac.2018.21.5.485
- Al-Mughanam, T., Aldhyani, T.H., AlSubari, B. and Al-Yaari, M. (2020), "Modeling of Compressive Strength of Sustainable SelfCompacting Concrete Incorporating Treated Palm Oil Fuel Ash Using Artificial Neural Network", Sustainability, 12(22), 9322. https://doi.org/10.3390/su12229322
- Alabduljabbar, H., Huseien, G.F., Sam, A.R.M., Alyouef, R., Algaifi, H.A. and Alaskar, A. (2020), "Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction", Materials, 13(23), 5490. https://doi.org/10.3390/ma13235490
- Algaifi, H.A., Bakar, S.A., Sam, A.R.M., Abidin, A.R.Z., Shahir, S. and AL-Towayti, W.A.H. (2018), "Numerical modeling for crack self-healing concrete by microbial calcium carbonate", Constr. Build. Mater., 189, 816-824. https://doi.org/10.1016/j.conbuildmat.2018.08.218
- Algaifi, H.A., Bakar, S.A., Sam, A.R.M., Ismail, M., Abidin, A.R.Z., Shahir, S. and Altowayti, W.A.H. (2020), "Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete", Constr. Build. Mater., 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258
- Algaifi, H.A., Bakar, S.A., Alyousef, R., Sam, A.R.M., Ibrahim, M.W., Shahidan, S., Ibrahim, M. and Salami, B.A. (2021), "Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species", J. Mater. Res. Technol., 12(5-6), 967-981. https://doi.org/10.1016/j.jmrt.2021.03.037
- Alkroosh, I.S. and Sarker, P.K. (2019), "Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming", Comput. Concrete, Int. J., 24(4), 295-302. https://doi.org/10.12989/cac.2019.24.4.295
- Alshalif, A.F., Irwan, J., Othman, N., Al-Gheethi, A., Shamsudin, S. and Nasser, I.M. (2021), "Optimisation of carbon dioxide sequestration into bio-foamed concrete bricks pores using Bacillus tequilensis", J. CO2 Utiliz., 44, 101412. https://doi.org/10.1016/j.jcou.2020.101412
- Altowayti, W.A.H., Algaifi, H.A., Bakar, S.A. and Shahir, S. (2019), "The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: characteristics and modelling studies", Ecotoxicol. Environ. Safety, 172, 176-185. https://doi.org/10.1016/j.ecoenv.2019.01.067
- Awolusi, T.F., Oke, O.L., Akinkurolere, O.O. and Atoyebi, O.D. (2019), "Comparison of response surface methodology and hybrid-training approach of artificial neural network in modelling the properties of concrete containing steel fibre extracted from waste tyres", Cogent Eng., 6(1), 1649852. https://doi.org/10.1080/23311916.2019.1649852
- Bahiraei, M., Mazaheri, N. and Hosseini, S. (2020), "Neural network modeling of thermo-hydraulic attributes and entropy generation of an ecofriendly nanofluid flow inside tubes equipped with novel rotary coaxial double-twisted tape", Powder Technology, 369, 162-175. https://doi.org/10.1016/j.powtec.2020.05.014
- Balam, N.H., Mostofinejad, D. and Eftekhar, M. (2017), "Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete", Constr. Build. Mater., 145, 107-116. https://doi.org/10.1016/j.conbuildmat.2017.04.003
- Bundur, Z.B., Kirisits, M.J. and Ferron, R.D. (2015), "Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength", Cem. Concrete Res., 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002
- Bundur, Z.B., Amiri, A., Ersan, Y.C., Boon, N. and De Belie, N. (2017), "Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability", Cem. Concrete Res., 98, 44-49. https://doi.org/10.1016/j.cemconres.2017.04.005
- Dao, D.V., Ly, H.-B., Trinh, S.H., Le, T.-T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983. https://doi.org/10.3390/ma12060983
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
- Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266
- Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119
- Huseien, G.F., Sam, A.R.M., Algaifi, H.A. and Alyouef, R. (2021), "Development of a sustainable concrete incorporated with effective microorganism and fly Ash: Characteristics and modeling studies", Constr. Build. Mater., 285, 122899. https://doi.org/10.1016/j.conbuildmat.2021.122899
- Jafari, S. and Mahini, S.S. (2017), "Lightweight concrete design using gene expression programing", Constr. Build. Mater., 139, 93-100. https://doi.org/10.1016/j.conbuildmat.2021.122899
- Jakubovskis, R., Jankute, A., Urbonavicius, J. and Gribniak, V. (2020), "Analysis of mechanical performance and durability of self-healing biological concrete", Constr. Build. Mater., 260, 119822. https://doi.org/10.1016/j.conbuildmat.2020.119822
- Jena, S., Basa, B., Panda, K.C. and Sahoo, N.K. (2020), "Impact of Bacillus subtilis bacterium on the properties of concrete", Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.03.129
- Kathirvel, P. and Kaliyaperumal, S.R.M. (2017), "Probabilistic modeling of geopolymer concrete using response surface methodology", Comput. Concrete, Int. J., 19(6), 737-744. https://doi.org/10.12989/cac.2017.19.6.737
- Liu, Q.-f., Iqbal, M.F., Yang, J., Lu, X.-y., Zhang, P. and Rauf, M. (2021), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 268, 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082
- Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241
- Mahdinia, S., Eskandari-Naddaf, H. and Shadnia, R. (2019), "Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method", Constr. Build. Mater., 198, 27-41. https://doi.org/10.1016/j.conbuildmat.2018.11.265
- Mahmud, M.Z.H., Hassan, N.A., Hainin, M.R. and Ismail, C.R. (2017), "Microstructural investigation on air void properties of porous asphalt using virtual cut section", Constr. Build. Mater., 155, 485-494. https://doi.org/10.1016/j.conbuildmat.2017.08.103
- Mondal, S. and Ghosh, A.D. (2019), "Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete", Constr. Build. Mater., 225, 67-75. https://doi.org/10.1016/j.conbuildmat.2019.07.122
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Mukharjee, B.B. and Barai, S.V. (2014), "Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete", Constr. Build. Mater., 71, 570-578. https://doi.org/10.1016/j.conbuildmat.2014.08.040
- Muthuraj, M. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., Int. J., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671
- Naderpour, H. and Mirrashid, M. (2020), "Estimating the compressive strength of eco-friendly concrete incorporating recycled coarse aggregate using neuro-fuzzy approach", J. Clean. Prod., 121886. https://doi.org/10.1016/j.jclepro.2020.121886
- Nain, N., Surabhi, R., Yathish, N., Krishnamurthy, V., Deepa, T. and Tharannum, S. (2019), "Enhancement in strength parameters of concrete by application of Bacillus bacteria", Constr. Build. Mater., 202, 904-908. https://doi.org/10.1016/j.conbuildmat.2019.01.059
- Nathaniel, O., Sam, A.R.M., Lim, N.H.A.S., Adebisi, O. and Abdulkareem, M. (2020), "Biogenic approach for concrete durability and sustainability using effective microorganisms: A review", Constr. Build. Mater., 261, 119664. https://doi.org/10.1016/j.conbuildmat.2020.119664
- Nematzadeh, M., Shahmansouri, A.A. and Zabihi, R. (2021), "Innovative models for predicting post-fire bond behavior of steel rebar embedded in steel fiber reinforced rubberized concrete using soft computing methods", In: Structures, Vol. 31, pp. 1141-1162. https://doi.org/10.1016/j.istruc.2021.02.015
- Nguyen, T.H., Ghorbel, E., Fares, H. and Cousture, A. (2019), "Bacterial self-healing of concrete and durability assessment", Cem. Concrete Compos., 104, 103340. https://doi.org/10.1016/j.cemconcomp.2019.103340
- Nigdeli, S.M. and Bekdas, G. (2013), "Optimum tuned mass damper design for preventing brittle fracture of RC buildings", Smart Struct. Syst., Int. J., 12(2), 137-155. https://doi.org/10.12989/sss.2013.12.2.137
- Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M.D., Marto, A., Mu'azu, M., Ghanbari, E., Mahdizadeh, M. and Shariati, A. (2018), "Portland cement structure and its major oxides and fineness", Smart Struct. Syst., Int. J., 22(4), 425-432. https://doi.org/10.12989/sss.2018.22.4.425
- Okwadha, G.D. and Li, J. (2010), "Optimum conditions for microbial carbonate precipitation", Chemosphere, 81(9), 1143- 1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
- Onat, O. and Celik, E. (2017), "An integral based fuzzy approach to evaluate waste materials for concrete", Smart Struct. Syst., Int. J., 19(3), 323-333. https://doi.org/10.12989/sss.2017.19.3.323
- Perumal, R. and Prabakaran, V. (2020), "Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs", Adv. Concrete Constr., Int. J., 10(6), 479-488. https://doi.org/10.12989/acc.2020.10.6.479
- Prasad, B.R., Eskandari, H. and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014
- Qian, C., Wang, J., Wang, R. and Cheng, L. (2009), "Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii", Mater. Sci. Eng.: C, 29(4), 1273-1280. https://doi.org/10.1016/j.msec.2008.10.025
- Reddy, B.M.S. and Revathi, D. (2019), "An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete", Materials Today: Proceedings, 19(2), 803-809. https://doi.org/10.1016/j.matpr.2019.08.135
- Sadowski, L., Nikoo, M. and Nikoo, M. (2018), "Concrete compressive strength prediction using the imperialist competitive algorithm", Comput. Concrete, Int. J., 22(4), 355-363. https://doi.org/10.12989/cac.2018.22.4.355
- Scrivener, K., Fullmann, T., Gallucci, E., Walenta, G. and Bermejo, E. (2004), "Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods", Cem. Concrete Res., 34(9), 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014
- Shaban, W.M., Yang, J., Elbaz, K., Xie, J. and Li, L. (2021), "Fuzzy-metaheuristic ensembles for predicting the compressive strength of brick aggregate concrete", Resour. Conserv. Recycl., 169, 105443. https://doi.org/10.1016/j.resconrec.2021.105443
- Shaheen, N., Khushnood, R.A., Khaliq, W., Murtaza, H., Iqbal, R. and Khan, M.H. (2019), "Synthesis and characterization of bioimmobilized nano/micro inert and reactive additives for feasibility investigation in self-healing concrete", Constr. Build. Mater., 226, 492-506. https://doi.org/10.1016/j.conbuildmat.2019.07.202
- Shahmansouri, A.A., Bengar, H.A. and Jahani, E. (2019), "Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm", Constr. Build. Mater., 229, 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883
- Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte, H.F. (2020), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Clean. Prod., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697
- Shahmansouri, A.A., Bengar, H.A. and AzariJafari, H. (2021a), "Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment", Constr. Build. Mater., 268, 121136. https://doi.org/10.1016/j.conbuildmat.2020.121136
- Shahmansouri, A.A., Nematzadeh, M. and Behnood, A. (2021b), "Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method", J. Build. Eng., 36, 102138. https://doi.org/10.1016/j.jobe.2020.102138
- Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020a), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., Int. J., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155
- Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020b), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
- Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, Int. J., 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273
- Siddique, R., Jameel, A., Singh, M., Barnat-Hunek, D., Ait-Mokhtar, A., Belarbi, R. and Rajor, A. (2017), "Effect of bacteria on strength, permeation characteristics and microstructure of silica fume concrete", Constr. Build. Mater., 142, 92-100. https://doi.org/10.1016/j.conbuildmat.2017.03.057
- Snoeck, D., Dewanckele, J., Cnudde, V. and De Belie, N. (2016), "X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers", Cem. Concrete Compos., 65, 83-93. https://doi.org/10.1016/j.cemconcomp.2015.10.016
- Sokhansefat, G., Moradian, M., Finnell, M., Behravan, A., Ley, M.T., Lucero, C. and Weiss, J. (2020), "Using X-ray computed tomography to investigate mortar subjected to freeze-thaw cycles", Cem. Concrete Compos., 108, 103520. https://doi.org/10.1016/j.cemconcomp.2020.103520
- Soto-Perez, L., Lopez, V. and Hwang, S.S. (2015), "Response Surface Methodology to optimize the cement paste mix design: Time-dependent contribution of fly ash and nano-iron oxide as admixtures", Mater. Des., 86, 22-29. https://doi.org/10.1016/j.matdes.2015.07.049
- Su, Y., Feng, J., Jin, P. and Qian, C. (2019), "Influence of bacterial self-healing agent on early age performance of cement-based materials", Constr. Build. Mater., 218, 224-234. https://doi.org/10.1016/j.conbuildmat.2019.05.077
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Computat. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Valipour, M., Yekkalar, M., Shekarchi, M. and Panahi, S. (2014), "Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments", J. Clean. Prod., 65, 418-423. https://doi.org/10.1016/j.jclepro.2013.07.055
- Wang, J., Jonkers, H.M., Boon, N. and De Belie, N. (2017), "Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete", Appl. Microbiol. Biotechnol., 101(12), 5101-5114. https://doi.org/10.1007/s00253-017-8260-2
- Wu, M., Hu, X., Zhang, Q., Cheng, W., Xue, D. and Zhao, Y. (2020), "Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks", Cem. Concrete Compos., 103718. https://doi.org/10.1016/j.cemconcomp.2020.103718
- Xu, J., Wang, B. and Zuo, J. (2017), "Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach", Cem. Concrete Compos., 81, 1-10. https://doi.org/10.1016/j.cemconcomp.2017.04.003
- Zhang, J.L., Wu, R.S., Li, Y.M., Zhong, J.Y., Deng, X., Liu, B., Han, N.X. and Xing, F. (2016), "Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process", Appl. Microbiol. Biotechnol., 100(15), 6661-6670. https://doi.org/10.1007/S00253-016-7382-2
- Zhang, J., Bian, F., Zhang, Y., Fang, Z., Fu, C. and Guo, J. (2018), "Effect of pore structures on gas permeability and chloride diffusivity of concrete", Constr. Build. Mater., 163, 402-413. https://doi.org/10.1016/j.conbuildmat.2017.12.111
- Zhang, J., Li, D. and Wang, Y. (2020), "Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model", J. Build. Eng., 30, 101282. https://doi.org/10.1016/j.jobe.2020.101282
- Zhao, Y., Moayedi, H., Bahiraei, M. and Foong, L.K. (2020), "Employing TLBO and SCE for optimal prediction of the compressive strength of concrete", Smart Struct. Syst., Int. J., 26(6), 753-763. http://doi.org/10.12989/sss.2020.26.6.753
- Zhao, Y., Bai, C., Xu, C. and Foong, L.K. (2021a), "Efficient metaheuristic-retrofitted techniques for concrete slump simulation", Smart Struct. Syst., Int. J., 27(5), 745-759. http://doi.org/10.12989/sss.2021.27.5.745
- Zhao, Y., Zhong, X. and Foong, L.K. (2021b), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., Int. J., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081