DOI QR코드

DOI QR Code

Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior

  • 투고 : 2020.09.16
  • 심사 : 2021.07.29
  • 발행 : 2021.10.25

초록

Extensive studies have been performed by researchers to increase the ductility and energy-absorption of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy-absorbing is the utilization of energy-dissipation systems. In this regard, the energy-dissipation system consisting of a steel dual-ring damper (SDRD) with different construction details is presented, to improve hysteresis behavior and performance of steel ring dampers (SRD). The most important cause of energy-dissipation in SRDs are the development of bending plastic hinges in the rings. Therefore, by adding an inner ring to the SDR system, it increases the number of moment plastic hinges and in turn increases energy dissipation. Parametric studies havse been performed applying the nonlinear micro-finite element (MFE) procedure to investigate the improved models. The parametric studies comprise examining the efficacy of thickness parameters and the inner ring diameters of the improved models. The SRD models was selected as the base model for comparing and evaluating the effects of improved dampers. MFE models were then analyzed under cyclic loading and nonlinear static methods. Confirmation of the results of the MFE models were performed against the test results. The results indicated that the diameter to the thickness ratio of inner ring of SDRDs has a considerable influence on determining the hysteresis behavior, ductility, ultimate capacity and performance, as well as energy dissipation. Also, the results show that the details of the construction of the internal and external ring connections were a considerable effect on the performance and hysteresis behavior of SDRDs.

키워드

참고문헌

  1. ABAQUS-6.10 (2010), Standard user's manual. Hibbitt, Karlsson and Sorensen, Inc.
  2. Abbasnia, R., Vetr, M.G.H., Ahmadi, R. and Kafi, M.A. (2008), "Experimental and analytical investigation on the steel ring ductility", J. Sharif Sci. Technol., 52, 41-48.
  3. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures", J. Constr. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004
  4. AISC 360-16 (2016), American Institute of Steel Construction, Specification for Structural Steel Buildings (ANSI/AISC 360-16).
  5. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016
  6. ATC-24 (1992), Guidelines for cyclic seismic testing of components of steel structures.
  7. Batterbee, D.C. and Sims, N.D. (2005), "Vibration isolation with smart fluid dampers: a benchmarking study", Smart Struct. Syst., Int. J., 1(3), 235-256. https://doi.org/10.12989/sss.2005.1.3.235
  8. Bazzaz, M., Kheyroddin, A., Kafi, M.A. and Andalib, Z. (2012), "Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames", Steel Compos. Struct., Int. J., 12(5), 445-464. https://doi.org/10.12989/scs.2012.12.5.445
  9. Bazzaz, M., Andalib, Z., Kheyroddin, A. and Kafi, M.A. (2015), "Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system", Steel Compos. Struct., Int. J., 19(4), 917-937. https://doi.org/10.12989/scs.2015.19.4.917
  10. Benavent-Climent, A. (2010), "A brace-type seismic damper based on yielding the walls of hollow structural sections", Eng. Struct., 32(4), 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037
  11. Bergman, D. (1987), Evaluation of cyclic testing of steel-plate devices for added damping and stiffness, Dept. of Civil Engineering, University of Michigan, MI, USA. https://www.worldcat.org/title/evaluation-of-cyclic-testing-of-steel-plate-devices-for-added-damping-andstiffness/oclc/20751244
  12. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plast., 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0
  13. Chaboche, J.L. (1989), "Constitutive equations for cyclic plasticity and cyclic viscoplasticity", Int. J. Plast., 5(3), 247-302. https://doi.org/10.1016/0749-6419(89)90015-6
  14. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/J.ENGSTRUCT.2007.07.005
  15. Chen, Z., Dai, Z., Huang, Y. and Bian, G. (2013), "Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics", Eng. Struct., 48, 245-254. https://doi.org/10.1016/J.ENGSTRUCT.2012.09.008
  16. Duan, Y., Ni, Y.Q., Zhang, H., Spencer, B.F., Ko, J.M. and Dong, S. (2019), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.537
  17. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., Int. J., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633
  18. Farghaly, A.A. (2015), "Seismic analysis of 3-D two adjacent buildings connected by viscous dampers with effect of underneath different soil kinds", Smart Struct. Syst., Int. J., 15(5), 1293-1309. https://doi.org/10.12989/sss.2015.15.5.1293
  19. FEMA 356 (2000), Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings.
  20. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751
  21. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145
  22. Gray, M.G., Christopoulos, C. and Packer, J.A. (2014), "Cast steel yielding brace system for concentrically braced frames: concept development and experimental validations", J. Struct. Eng., 140(4), 04013095. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000910
  23. Hsu, H.L. and Halim, H. (2017), "Improving seismic performance of framed structures with steel curved dampers", Eng. Struct., 130, 99-111. https://doi.org/10.1016/j.engstruct.2016.09.063
  24. Hsu, H.-L.L. and Halim, H. (2018), "Brace performance with steel curved dampers and amplified deformation mechanisms", Eng. Struct., 175, 628-644. https://doi.org/10.1016/j.engstruct.2018.08.052
  25. Kelly, J.M., Skinner, R.I. and Heine, A.J. (1972), "Mechanisms of energy absorption in special devices for use in earthquake resistant structures", Bull. N.Z. Soc. Earthq. Eng., 5(3), 63-88. https://www.nzsee.org.nz/db/Bulletin/Archive/05(3)0063.pdf
  26. Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473
  27. Koetaka, Y., Chusilp, P., Zhang, Z., Ando, M., Suita, K., Inoue, K. and Uno, N. (2005), "Mechanical property of beam-to-column moment connection with hysteretic dampers for column weak axis", Eng. Struct., 27(1), 109-117. https://doi.org/10.1016/j.engstruct.2004.09.002
  28. Kori, J.G. and Jangid, R.S. (2008), "Semi-active friction dampers for seismic control of structures", Smart Struct. Syst., Int. J., 4(4), 493-515. https://doi.org/10.12989/sss.2008.4.4.493
  29. Li, H.-N. and Li, G. (2007), "Experimental study of structure with "dual function" metallic dampers", Eng. Struct., 29(8), 1917- 1928. https://doi.org/10.1016/J.ENGSTRUCT.2006.10.007
  30. Li, G.Q., Sun, Y.Z., Jiang, J., Sun, F.F. and Ji, C. (2019), "Experimental study on two-level yielding buckling-restrained braces", J. Constr. Steel Res., 159, 260-269. https://doi.org/10.1016/j.jcsr.2019.04.042
  31. Mahjoubi, S. and Maleki, S. (2016), "Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers", J. Constr. Steel Res., 122, 25-39. https://doi.org/10.1016/J.JCSR.2016.01.023
  32. Maleki, S. and Bagheri, S. (2010a), "Pipe damper, Part I: Experimental and analytical study", J. Constr. Steel Res., 66(8), 1088-1095. https://doi.org/10.1016/j.jcsr.2010.03.010
  33. Maleki, S. and Bagheri, S. (2010b), "Pipe damper, Part II: Application to bridges", J. Constr. Steel Res., 66(8), 1096-1106. https://doi.org/10.1016/j.jcsr.2010.03.011
  34. Maleki, S. and Mahjoubi, S. (2013), "Dual-pipe damper", J. Constr. Steel Res., 85, 81-91. https://doi.org/10.1016/j.jcsr.2013.03.004
  35. Maleki, S. and Mahjoubi, S. (2014), "Infilled-pipe damper", J. Constr. Steel Res., 98, 45-58. https://doi.org/10.1016/j.jcsr.2014.02.015
  36. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., Int. J., 36(2), 163-177. https://doi.org/10.12989/SCS.2020.36.2.163
  37. Mohebkhah, A. and Azandariani, M.G. (2016), "Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient", Thin-Wall. Struct., 102, 215-221. https://doi.org/10.1016/j.tws.2016.02.001
  38. Nakashima, M. (1995), "Strain-hardening behavior of shear panels made of low-yield steel. I: test", J. Struct. Eng., 121(12), 1742-1749. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1750)
  39. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997- 2008. https://doi.org/10.1016/j.engstruct.2009.03.003
  40. Qu, B., Dai, C., Qiu, J., Hou, H. and Qiu, C. (2019), "Testing of seismic dampers with replaceable U-shaped steel plates", Eng. Struct., 179, 625-639. https://doi.org/10.1016/J.ENGSTRUCT.2018.11.016
  41. Rai, D.C., Annam, P.K. and Pradhan, T. (2013), "Seismic testing of steel braced frames with aluminum shear yielding dampers", Eng. Struct., 46, 737-747. https://doi.org/10.1016/J.ENGSTRUCT.2012.08.027
  42. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Constr. Steel Res., 114, 247-257. https://www.sciencedirect.com/science/article/pii/S0143974X15300547 https://doi.org/10.1016/j.jcsr.2015.08.006
  43. Shi, Y., Wang, M. and Wang, Y. (2011), "Experimental and constitutive model study of structural steel under cyclic loading", J. Constr. Steel Res., 67(8), 1185-1197. https://doi.org/10.1016/j.jcsr.2011.02.011
  44. Skinner, R.I., Kelly, J.M. and Heine, A.J. (1974), "Hysteretic dampers for earthquake-resistant structures", Earthq. Eng. Struct. Dyn., 3(3), 287-296. https://doi.org/10.1002/eqe.4290030307
  45. Talebizadehsardari, P., Eyvazian, A., Gorji Azandariani, M., Nhan Tran, T., Kumar Rajak, D. and Babaei Mahani, R. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635
  46. Tsai, K., Chen, H., Hong, C. and Su, Y. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727
  47. Vilela, P.M.L., Carvalho, H., Grilo, L.F., Montenegro, P.A. and Calcada, R.B. (2019), "Unitary model for the analysis of bolted connections using the finite element method", Eng. Fail. Anal., 104, 308-320. https://doi.org/10.1016/j.engfailanal.2019.06.001
  48. Wang, C.L., Gao, Y., Cheng, X., Zeng, B. and Zhao, S. (2019), "Experimental investigation on H-section buckling-restrained braces with partially restrained flange", Eng. Struct., 199, 109584. https://doi.org/10.1016/j.engstruct.2019.109584
  49. Whittaker, A.S., Bertero, V.V., Thompson, C.L. and Alonso, L.J. (1991), "Seismic testing of steel plate energy dissipation devices", Earthq. Spectra, 7(4), 563-604. https://doi.org/10.1193/1.1585644
  50. Xu, L.-Y., Nie, X. and Fan, J.-S. (2016), "Cyclic behaviour of low-yield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/J.ENGSTRUCT.2016.08.002
  51. Yeh, C.H., Lu, L.Y., Chung, L.L. and Huang, C.S. (2001), "Test of a full-scale steel frame with TADAS", Earthq. Eng. Eng. Seismol., 3(2).
  52. Zhang, C., Zhang, Z. and Shi, J. (2012), "Development of high deformation capacity low yield strength steel shear panel damper", J. Constr. Steel Res., 75, 116-130. https://doi.org/10.1016/J.JCSR.2012.03.014
  53. Zhou, Z., Ye, B. and Chen, Y. (2019), "Experimental investigation of curved steel knee braces with adjustable yield displacements", J. Constr. Steel Res., 161, 17-30. https://doi.org/10.1016/j.jcsr.2019.06.011