Acknowledgement
This research was supported by a grant (2020-MOIS31-013) of Fundamental Technology Development Program for Extreme Disaster Response funded by Ministry of Interior and Safety (MOIS, Korea).
References
- Ang, A.H.-S. and Tang, W.H. (2007), Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, (2nd Edition), John Wiley & Sons, Hoboken, NJ, USA.
- Askan, A. and Yucemen, M.S. (2010), "Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey", Struct. Saf., 32(4), 262-271. https://doi.org/10.1016/j.strusafe.2010.04.001
- Barbato, M., Gu, Q. and Conte, J.P. (2010), "Probabilistic pushover analysis of structural and soil-structure systems", J. Struct. Eng., 136(11), 1330-1341. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000231
- Der Kiureghian, A. (2005), First- and Second-Order Reliability Methods, Engineering Design Reliability Handbook, (edited by Nikolaidis, E., Ghiocel, D.M. and Singhal, S.), Chapter 14, CRC Press, Boca Raton, FL, USA.
- Dolsek, M. (2012), "Simplified method for seismic risk assessment of buildings with consideration of aleatory and epistemic uncertainty", Struct. Infrastruct. Eng., 8(10), 939-953. https://doi.org/10.1080/15732479.2011.574813
- Ellingwood, B.R., Celik, O.C. and Kinali, K. (2007), "Fragility assessment of building structural systems in Mid-America", Earthq. Eng. Struct. Dyn., 36(13), 1935-1952. https://doi.org/10.1002/eqe.693
- Elnashai, A.S., Papanikolaou, V.K. and Lee, D. (2010), "ZEUS NL - A System for Inelastic Analysis of Structures", User's manual; Mid-America Earthquake (MAE) Center, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Federal Emergency Management Agency (FEMA) (2013), "Hazus-MH 2.1: Technical manual. Multi-hazard loss estimation methodology, earthquake model".
- Giordano, N., De Luca, F., Sextos, A., Cortes, F.R., Ferreira, C.F. and Wu, J. (2021), "Empirical seismic fragility models for Nepalese school buildings", Nat. Hazards, 105, 339-362. https://doi.org/10.1007/s11069-020-04312-1
- Guneyisi, E.M. and Altay, G. (2008), "Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes", Struct. Saf., 30(5), 461-480. https://doi.org/10.1016/j.strusafe.2007.06.001
- Haukaas, T. (2003), "Finite element reliability and sensitivity methods for performance-based engineering", Ph.D. Dissertation; University of California, Berkeley, CA, USA.
- Hueste, M.B.D. and Bai, J.W. (2007), "Seismic retrofit of a reinforced concrete flat-slab structure: Part II-Seismic fragility analysis", Eng. Struct., 29(6), 1178-1188. https://doi.org/10.1016/j.engstruct.2006.07.022
- Jaiswal, K.S., Aspinall, W., Perkins, D., Wald, D. and Porter, K.A. (2012), "Use of expert judgment elicitation to estimate seismic vulnerability of selected building types", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
- Ji, J., Elnashai, A.S. and Kuchma, D.A. (2009), "Seismic fragility relationships of reinforced concrete high-rise buildings", Struct. Des. Tall Spec., 18(3), 259-277. https://doi.org/10.1002/tal.408
- Kang, S., Kim, B., Bae, S., Lee, H. and Kim, M. (2019), "Earthquake-induced ground deformations in the low-seismicity region: a case of the 2017 M5.4 Pohang, South Korea, earthquake", Earthq. Spectra, 35, 1235-1260. https://doi.org/10.1193/062318EQS160M
- Kappos, A.J., Stylianidis, K.C. and Pitilakis, K. (1998), "Development of seismic risk scenarios based on a hybrid method of vulnerability assessment", Nat. Hazards, 17(2), 177- 192, https://doi.org/10.1023/A:1008083021022
- Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. and Penelis, G. (2006), "A hybrid method for the vulnerability assessment of R/C and URM buildings", B. Earthq. Eng., 4(4), 391-413. https://doi.org/10.1007/s10518-006-9023-0
- Kim, H., Sim, S.-H., Lee, J., Lee, Y.-J. and Kim, J.-M. (2017), "Flood fragility analysis for bridges with multiple failure modes", Adv. Mech. Eng., 9(3), 1-11. https://doi.org/10.1177/1687814017696415
- Kim, T., Chu, Y., Kim, S.R. and Bhandari, D. (2018), "Seismic behavior of domestic piloti-type buildings damaged by 2017 Pohang earthquake", J. Earthq. Eng. Soc. Korea, 22(3), 161- 168, (in Korean), https://doi.org/10.5000/EESK.2018.22.3.161
- Kim, B., Ji, Y., Kim, M., Lee, Y.-J., Kang, H., Yun, N.-R., Kim, H. and Lee, J. (2020a), "Building damage caused by the 2017 M5.4 Pohang, South Korea, earthquake, and effects of ground conditions", J. Earthq. Eng., 1-19. https://doi.org/10.1080/13632469.2020.1785585
- Kim, H.-S., Kim, M., Baise, L.G. and Kim, B. (2020b), "Local and regional evaluation of liquefaction potential index and liquefaction severity number for liquefaction-induced sand boils in Pohang, South Korea", Soil Dyn. Earthq. Eng., 106459. https://doi.org/10.1016/j.soildyn.2020.106459
- Kircher, C.A., Whitman, R.V. and Holmes, W.T. (2006), "HAZUS earthquake loss estimation methods", Nat. Hazards Rev., 7(2), 45-59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
- Kwon, O.-S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010
- Lee, Y.-J. and Moon, D.-S. (2014), "A new methodology of the development of seismic fragility curves", Smart Struct. Syst., Int. J., 14(5), 847-867. http://dx.doi.org/10.12989/sss.2014.14.5.847
- Lee, Y.-J. and Song, J. (2012), "Finite-element-based system reliability analysis of fatigue-induced sequential failures", Reliab. Eng. Syst. Safe., 108, 131-141. https://doi.org/10.1016/j.ress.2012.05.007
- Lee, Y.-J., Song, J. and Tuegel, E. (2008), "Finite element system reliability analysis of a wing torque box", Proceedings of the 10th AIAA Nondeterministic Approaches Conference, Schaumburg, IL, USA, April.
- Lee, J., Lee, Y.-J., Kim, H., Sim, S.-H. and Kim, J.-M. (2016), "A new methodology development for flood fragility curve derivation considering structural deterioration for bridges", Smart Struct. Syst., Int. J., 17(1), 149-165. http://dx.doi.org/10.12989/sss.2016.17.1.149
- Li, L.-X., Li, H.-N. and Li, C. (2018), "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., Int. J., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677
- Liu, Z. and Zhang, Z. (2017), "Fragility analysis of concrete-filled steel tube arch bridge subjected to near-fault ground motion considering the wave passage effect", Smart Struct. Syst., Int. J., 19(4), 415-429. https://doi.org/10.12989/sss.2017.19.4.415
- Martinez, A., Hube, M.A. and Rollins, K.M. (2017), "Analytical fragility curves for non-skewed highway bridges in Chile", Eng. Struct., 141, 530-542. https://doi.org/10.1016/j.engstruct.2017.03.041
- Montiel, M.A. and Ruiz, S.E. (2007), "Influence of structural capacity uncertainty on seismic reliability of buildings under narrow-band motions", Earthq. Eng. Struct. Dyn., 36(13), 1915- 1934. https://doi.org/10.1002/eqe.711
- Moon, D.-S., Lee, Y.-J. and Lee, S. (2018), "Fragility analysis of space reinforced concrete frame structures with structural irregularity in plan", J. Struct. Eng., 144(8), 04018096. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002092
- Moradloo, J., Naserasadi, K. and Zamani, H. (2018), "Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model", Struct. Eng. Mech., Int. J., 68(6), 747-760. https://doi.org/10.12989/sem.2018.68.6.747
- Mosleh, A. and Apostolakis, G. (1986), "The assessment of probability distributions from expert opinions with an application to seismic fragility curves", Risk Anal., 6(4), 447-461. https://doi.org/10.1111/j.1539-6924.1986.tb00957.x
- Paik, I.-Y., Shim, C.-S., Chung, Y.-S. and Sang, H.-J. (2011), "Statistical properties of material strength of concrete, re-bar and strand used in domestic construction site", J. Korea Concr. Inst., 23(4), 421-430. [In Korean] https://doi.org/10.4334/JKCI.2011.23.4.421
- Park, Y.-J. and Ang, A.H.-S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
- Pitilakis, K., Crowley, H. and Kaynia, A.M. (2014), "SYNER-G: typology definition and fragility functions for physical elements at seismic risk", Geotec. Geol. Earthq. Eng., 27, 1-28. https://doi.org/10.1007/978-94-007-7872-6
- Ramamoorthy, S.K., Gardoni, P. and Bracci, J.M. (2006), "Probabilistic demand models and fragility curves for reinforced concrete frames", J. Struct. Eng., 132(10), 1563-1572. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1563)
- Razzaghi, M.S., Safarkhanlou, M., Mosleh, A. and Hosseini, P. (2018), "Fragility assessment of RC bridges using numerical analysis and artificial neural networks", Earthq. Struct., Int. J., 15(4), 431-441. http://dx.doi.org/10.12989/eas.2018.15.4.431
- Rossetto, T. and Elnashai, A. (2003), "Derivation of vulnerability functions for European-type RC structures based on observational data", Eng. Struct., 7(3), 1241-1263. https://doi.org/10.1016/S0141-0296(03)00060-9
- Rosti, A., Rota, M. and Penna, A. (2020), "Empirical fragility curves for Italian URM buildings", Bull. Earthq. Eng., 19(8), 3057-3076. https://doi.org/10.1007/s10518-020-00845-9
- Silva, V., Crowley, H., Varum, H., Pinho, R. and Sousa, R. (2014), "Evaluation of analytical methodologies used to derive vulnerability functions", Earthq. Eng. Struct. Dyn., 43(2), 181-204. https://doi.org/10.1002/eqe.2337
- Sim, C., Laughery, L., Chiou, T.C. and Weng, P.-W. (2018), 2017 Pohang Earthquake - Reinforced Concrete Building Damage Survey. https://datacenterhub.org/resources/14728
- Singhal, A. and Kiremidjian, A.S. (1998), "Bayesian updating of fragilities with application to RC frames", J. Struct. Eng., 124(8), 922-929. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(922)
- Steelman, J., Song, J. and Hajjar, J.F. (2007), "Integrated data flow and risk aggregation for consequence-based risk management of seismic regional loss", Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA, November.
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
- Wen, Y.K., Ellingwood, B.R. and Bracci, J.M. (2004), "Vulnerability function framework for consequence-based engineering", MAE Center Report 04-04.
- Yoon, S., Lee, Y.-J. and Jung, H.-J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission", Int. J. Disast. Risk Re., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002
- Yu, X., Lu, D. and Li, B. (2016), "Estimating uncertainty in limit state capacities for reinforced concrete frame structures through pushover analysis", Earthq. Struct., Int. J., 10(1), 141-161. https://doi.org/10.12989/eas.2016.10.1.141