DOI QR코드

DOI QR Code

Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory

  • Abdelrahman, Alaa A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Esen, Ismail (Department of Mechanical Engineering, Karabuk University) ;
  • Ozarpa, Cevat (Department of Mechanical Engineering, Karabuk University) ;
  • Shaltout, Ramy (Mechanical Power Department, Faculty of Engineering, Zagazig University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Assie, Amr E. (Mechanical Engineering Department, Faculty of Engineering, Jazan University)
  • Received : 2020.12.31
  • Accepted : 2021.05.17
  • Published : 2021.10.25

Abstract

The goal of this manuscript is to develop a nonclassical size dependent model to study and analyze the dynamic behaviour of the perforated Reddy nanobeam under moving load including the length scale and microstructure effects, that not considered before. The kinematic assumption of the third order shear deformation beam theory in conjunction with modified continuum constitutive equation of nonlocal strain gradient (NLSG) elasticity are proposed to derive the equation of motion of nanobeam included size scale (nonlocal) and microstructure (strain gradient) effects. Mathematical expressions for the equivalent geometrical parameters due to the perforation process of regular squared pattern are developed. Based on the virtual work principle, the governing equations of motion of perforated Reddy nanobeams are derived. Based on Navier's approach, an analytical solution procedure is developed to obtain free and forced vibration response under moving load. The developed methodology is verified and checked with previous works. Impacts of perforation, moving load velocity, microstructure parameter and nonlocal size scale effects on the dynamic and vibration responses of perforated Reddy nanobeam structures have been investigated in a wide context. The obtained results are supportive for the design of MEMS/NEMS structures such as frequency filters, resonators, relay switches, accelerometers, and mass flow sensors, with perforation.

Keywords

References

  1. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8
  2. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., Int. J., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
  3. Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2020a), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 1-21. https://doi.org/10.1007/s40430-019-1996-0
  4. Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020b), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., Int. J., 76(6), 765-779. http://dx.doi.org/10.12989/sem.2020.76.6.765
  5. Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Mathe. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
  6. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020a), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0
  7. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct. Mach., 1-22. https://doi.org/10.1080/15397734.2020.1838298
  8. Abo-Bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370
  9. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. http://dx.doi.org/10.12989/sss.2016.18.6.1125
  10. Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), "Static analysis of cutout microstructures incorporating the microstructure and surface effects", Steel Compos. Struct., Int. J., 38(5), 583-597. https://doi.org/10.12989/scs.2021.38.5.583
  11. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
  12. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., Int. J., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  13. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055
  14. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., Int. J., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
  15. Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B: Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103
  16. Arani, A.G., Pourjamshidian, M. and Arefi, M. (2017), "Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories", Smart Struct. Syst., Int. J., 20(3), 329-342. http://dx.doi.org/10.12989/sss.2019.23.3.215
  17. Arani, A.G., Pourjamshidian, M. and Arefi, M. (2018), "Nonlinear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., Int. J., 22(1), 105-120. https://doi.org/10.12989/sss.2018.22.1.105
  18. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
  19. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2
  20. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  21. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
  22. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  23. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. http://dx.doi.org/10.12989/sss.2017.19.2.115
  24. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485
  25. Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E: Low-dimens. Syst. Nanostruct., 75, 163-168. http://dx.doi.org/10.1016/j.physe.2015.09.014
  26. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
  27. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
  28. Cao, X., Xuan, S., Li, J., Li, Z., Hu, T., Liang, H., Ding, L., Li, B. and Gong, X. (2019), "Magnetic-tunable sound absorber based on micro-perforated magnetorheological elastomer", Smart Mater. Struct., 29(1), 015024. https://orcid.org/0000-0001-6997-9526 https://doi.org/10.1088/1361-665x/ab57ec
  29. Daikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1(1), 015022. https://orcid.org/0000-0002-4666-2750 https://doi.org/10.1088/2631-8695/ab38f9
  30. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020a), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1099636220909790. https://doi.org/10.1177/1099636220909790
  31. Daikh, A.A., Drai, A., Houari M.S.A, and Eltaher, M.A. (2020b), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., Int. J., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.64
  32. Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021a), "Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250
  33. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021b), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347
  34. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369
  35. Ebrahimi, F. and Barati, M.R. (2016), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Thermal Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726
  36. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  37. Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions", Smart Struct. Syst., Int. J., 18(6), 1087-1109. http://dx.doi.org/10.12989/sss.2016.18.6.1087
  38. Ebrahimi, F., Daman, M. and Jafari, A. (2017), "Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment", Smart Struct. Syst., Int. J., 20(6), 709-728. http://dx.doi.org/10.12989/sss.2017.20.6.709
  39. Eglin, M., Eriksson, M.A. and Carpick, R.W. (2006), "Microparticle manipulation using inertial forces", Appl. Phys. Lett., 88(9), 091913. https://doi.org/10.1063/1.2172401
  40. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., Int. J., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143
  41. Eltaher, M.A. and Mohamed, N. (2020a), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Mathe. Computat., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311
  42. Eltaher, M.A. and Mohamed, N.A. (2020b), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., Int. J., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501
  43. Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016), "Nanobeam sensor for measuring a zeptogram mass", Int. J. Mech. Mater. Des., 12(2), 211-221. https://doi.org/10.1007/s10999-015-9302-5
  44. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881- 4893. https://doi.org/10.1007/s00542-018-3905-3
  45. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
  46. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018c), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136
  47. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020b), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., Int. J., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
  48. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020c), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., Int. J., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141
  49. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020d), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., Int. J., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
  50. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  51. Esen, I. (2019a), "Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass", Int. J. Mech. Sci., 153, 21-35. https://doi.org/10.1016/j.ijmecsci.2019.01.033
  52. Esen, I. (2019b), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech.-A/Solids, 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841
  53. Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501
  54. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7
  55. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Mach., 1-25. https://doi.org/10.1080/15397734.2021.1904255
  56. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021b), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
  57. Esen, I., Daikh, A.A. and Eltaher, M.A. (2021c), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 1-22. https://doi.org/10.1140/epjp/s13360-021-01419-7
  58. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021d), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5
  59. Farajpour, A. and Rastgoo, A. (2017), "Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory", Results Phys., 7, 1367-1375. https://doi.org/10.1016/j.rinp.2017.03.038
  60. Ferrari, M., Granik, V.T. and Imam, A. (1997), "Introduction to doublet mechanics", In: Advances in Doublet Mechanics (pp. 1-26), Springer, Berlin, Heidelberg.
  61. Ferrari, M., Granik, V.T., Imam, A. and Nadeau, J.C. eds. (2008), Advances in Doublet Mechanics, Vol. 45, Springer Science & Business Media.
  62. Ghadiri, M., Rajabpour, A. and Akbarshahi, A. (2017), "Non-linear forced vibration analysis of nanobeams subjected to moving concentrated load resting on a viscoelastic foundation considering thermal and surface effects", Appl. Mathe. Modell., 50, 676-694. https://doi.org/10.1016/j.apm.2017.06.019
  63. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  64. Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01063-2
  65. Hamidi, B.A., Hosseini, S.A., Hayati, H. and Hassannejad, R. (2020), "Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory", Mech. Based Des. Struct. Mach., 1-15. https://doi.org/10.1080/15397734.2020.1744003
  66. Hashemi, S.H. and Khaniki, H.B. (2018), "Dynamic response of multiple nanobeam system under a moving nanoparticle", Alexandria Eng. J., 57(1), 343-356. https://doi.org/10.1016/j.aej.2016.12.015
  67. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  68. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng. Comput., 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  69. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On prestressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 1-17. https://doi.org/10.1007/s40430-019-1996-0
  70. Kim, T., Park, I. and Lee, U. (2017), "Forced vibration of a Timoshenko beam subjected to stationary and moving loads using the modal analysis method", Shock Vib., 3924921. https://doi.org/10.1155/2017/3924921
  71. Kim, H.S., Kim, S.R., Kim, B.K., Ma, P.S. and Seo, Y.H. (2020), "Sound transmission loss of multi-layered infinite micro-perforated plates", J. Acoust. Soc. Am., 147(1), 508-515. https://doi.org/10.1121/10.0000600
  72. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", Proc. Koninklijke Nederl Akaad van Wetensch, 67, p. 20. https://hal.archives-ouvertes.fr/hal-00852443
  73. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  74. Li, Y. and Li, M. (2020), "Dynamic analysis of rotating double-tapered cantilever Timoshenko nano-beam using the nonlocal strain gradient theory", Mathe. Methods Appl. Sci., 43(15), 9206-9222. https://doi.org/10.1002/mma.6616
  75. Li, C., Shen, Q., Yao, L. and Li, S. (2015a), "Lateral bending vibration of nanoscale ultra-thin beams using a semi-continuum model", J. Computat. Theor. Nanosci., 12(9), 2507-2514. https://doi.org/10.1166/jctn.2015.4056
  76. Li, C., Chen, L. and Shen, J.P. (2015b), "Vibrational responses of micro/nanoscale beams: size-dependent nonlocal model analysis and comparisons", J. Mech., 31(1), 7-19. https://doi.org/10.1017/jmech.2014.50
  77. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  78. Li, C., Lai, S.K. and Yang, X. (2019), "On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter", Appl. Mathe. Modell., 69, 127-141. https://doi.org/10.1016/j.apm.2018.12.010
  79. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  80. Lou, P., Dai, G.L. and Zeng, Q.Y. (2007), "Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method", Shock Vib., 14(6), 459-468. https://doi.org/10.1155/2007/460206
  81. Lu, L., Guo, X. and Zhao, J. (2018), "On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy", Int. J. Eng. Sci., 124, 24-40. https://doi.org/10.1016/j.ijengsci.2017.11.020
  82. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428
  83. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
  84. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  85. Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
  86. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293
  87. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
  88. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
  89. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2
  90. Mouffoki, A., Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. http://dx.doi.org/10.12989/sss.2017.20.3.369
  91. Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solids, 46(3), 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  92. Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Mathe. Methods Appl. Sci. https://doi.org/10.1002/mma.6812
  93. Pourseifi, M., Rahmani, O. and Hoseini, S.A.H. (2015), "Active vibration control of nanotube structures under a moving nanoparticle based on the nonlocal continuum theories", Meccanica, 50(5), 1351-1369. https://doi.org/10.1007/s11012-014-0096-6
  94. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  95. Reddy, J.N. (2017), Energy principles and variational methods in applied mechanics, John Wiley & Sons.
  96. Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A. and Al-Zahrani, M.M. (2020), "Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory", Steel Compos. Struct., Int. J., 37(6), 695-709. https://doi.org/10.12989/scs.2020.37.6.695
  97. Roudbari, M.A., Jorshari, T.D., Arani, A.G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", Eur. J. Mech.-A/Solids, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978
  98. Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A. and Forro, L. (1999), "Elastic and shear moduli of single-walled carbon nanotube ropes", Phys. Rev. Lett., 82(5), 944. https://doi.org/10.1103/PhysRevLett.82.944
  99. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  100. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., Int. J., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027
  101. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407
  102. Shen, J.P. and Li, C. (2017), "A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution", Compos. Struct., 172, 210-220. https://doi.org/10.1016/j.compstruct.2017.03.070
  103. Shen, J.P., Li, C., Fan, X.L. and Jung, C.M. (2017), "Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects", Smart Struct. Syst., Int. J., 19(1), 105-113. http://dx.doi.org/10.12989/sss.2017.19.1.105
  104. Shen, J.P., Wang, P.Y., Li, C. and Wang, Y.Y. (2019), "New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory", Compos. Struct., 225, 111036. https://doi.org/10.1016/j.compstruct.2019.111036
  105. Shen, J.P., Wang, P.Y., Gan, W.T. and Li, C. (2020), "Stability of vibrating functionally graded nanoplates with axial motion based on the nonlocal strain gradient theory", Int. J. Struct. Stabil. Dyn., 20(08), 2050088. https://doi.org/10.1142/S0219455420500881
  106. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721- 1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
  107. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
  108. Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
  109. Uzun, B., Kafkas, U. and Yayli, M.O. (2020), "Free vibration analysis of nanotube based sensors including rotary inertia based on the Rayleigh beam and modified couple stress theories", Microsyst. Technol., 27, 1913-1923. https://doi.org/10.1007/s00542-020-04961-z
  110. Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin-Wall. Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003
  111. Xie, K., Wang, Y. and Fu, T. (2020), "Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique", Int. J. Mech. Mater. Des., 16(4), 839-855. https://doi.org/10.1007/s10999-020-09493-y
  112. Yao, L.Q., Ji, C.J., Shen, J.P. and Li, C. (2020), "Free vibration and wave propagation of axially moving functionally graded Timoshenko microbeams", J. Brazil. Soc. Mech. Sci. Eng., 42(3), 1-14. https://doi.org/10.1007/s40430-020-2206-9
  113. Yayli, M.O. (2015), "Stability analysis of gradient elastic microbeams with arbitrary boundary conditions", J. Mech. Sci. Technol., 29(8), 3373-3380. https://doi.org/10.1007/s12206-015-0735-4
  114. Yayli, M.O. (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257
  115. Yayli, M.O. (2018a), "Torsional vibrations of restrained nanotubes using modified couple stress theory", Microsyst. Technol., 24(8), 3425-3435. https://doi.org/10.1007/s00542-018-3735-3
  116. Yayli, M.O. (2018b), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-12. https://doi.org/10.1007/s40430-018-1346-7
  117. Yayli, M.O. (2018c), "An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach", J. Vib. Control, 24(11), 2230-2246. https://doi.org/10.1177/1077546316684042
  118. Yayli, M.O. (2020), "A solution method for longitudinal vibrations of functionally graded nanorods", Int. J. Eng. Appl. Sci., 12(2), 78-87. https://doi.org/10.24107/ijeas.782419
  119. Yayli, M.O., Uzun, B. and Deliktas, B. (2021), "Buckling analysis of restrained nanobeams using strain gradient elasticity", Waves Random Complex Media, 1-20. https://doi.org/10.1080/17455030.2020.1871112