과제정보
This subject is supported by Korea Ministry of Environment as "The SS projects; 2019002830001".
참고문헌
- Akgun, A. (2012). A Comparison of Landslide Susceptibility Maps Produced by Logistic Regression, Multi-Criteria Decision, and Likelihood Ratio Methods: A Case Study at Izmir, Turkey. Landslides. 9(1): 93-106. https://doi.org/10.1007/s10346-011-0283-7
- Althuwaynee, O. F., Pradhan, B., Park, H. J., and Lee, J. H. (2014). A Novel Ensemble Decision Tree-based CHi-squared Automatic Interaction Detection (CHAID) and Multivariate Logistic Regression Models in Landslide Susceptibility Mapping. Landslides. 11(6): 1063-1078. https://doi.org/10.1007/s10346-014-0466-0
- Bergen, K. J., Johnson, P. A., Maarten, V., and Beroza, G. C. (2019). Machine Learning for Data-driven Discovery in Solid Earth Geoscience. Science. 363(6433).
- Byeon, S. H., Kang, H. J., Han, J. W., and Kim, T. W. (2008). Flood Mitigation Planing for a Basin Using a Decision Tree Model. Journal of Civil and Environmental Engineering Research B. 28(1B): 33-40.
- Chae, B. G., Kim, W. Y., Kim, Y. C., Kim, K. S., Lee, C. O. and Choi, Y. S. (2004). Development of a Logistic Regression Model for Probabilistic Prediction of Debris Flow. The Journal of Engineering Geology. 14(2): 211-222.
- Chen, W., Peng, J., Hong, H., Shahabi, H., Pradhan, B., Liu, J., Zhu, A., Pei, X., and Duan, Z. (2018). Landslide Susceptibility Modelling using GIS-based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the total environment. 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
- Choi, S. W., Jang, W. C. (2017). Forecasting Probabilities of Earthquake in Korea Based on Seismological Data. The Korean Journal of Applied Statistics. 30(5): 759-774. https://doi.org/10.5351/KJAS.2017.30.5.759
- Danneels, G., Pirard, E., and Havenith, H. B. (2007). Automatic Landslide Detection from Remote Sensing Images using Supervised Classification Methods. In 2007 IEEE International Geoscience and Remote Sensing Symposium. 3014-3017.
- Ding, A., Zhang, Q., Zhou, X., and Dai, B. (2016). Automatic Recognition of Landslide Based on CNN and Texture Change Detection. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). 444-448.
- Kirschbaum, D. and Stanley, T. (2018). Satellite-based Assessment of Rainfall-triggered Landslide Hazard for Situational Awareness. Earth's Future. 6(3): 505-523. https://doi.org/10.1002/2017EF000715
- Ma, Z., Mei, G., and Piccialli, F. (2020). Machine Learning for Landslides Prevention: A Survey. Neural Computing and Applications. 1-27.
- National Institute of Forest Science. (2018). Field Survey Manual of Soil Creep. Seoul: NIFoS.
- Park, J. H. (2015). Analysis on the Characteristics of the Landslide-with a Special Reference on Geo-topographical Characteristics. Journal of Korean Society of Forest Science. 104(4): 588-597. https://doi.org/10.14578/jkfs.2015.104.4.588
- Segoni, S., Lagomarsino, D., Fanti, R., Moretti, S., and Casagli, N. (2015). Integration of Rainfall Thresholds and Susceptibility Maps in the Emilia Romagna (Italy) Regional-scale Landslide Warning System. Landslides. 12(4): 773-785. https://doi.org/10.1007/s10346-014-0502-0
- Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y., and Demir, I. (2020). A Comprehensive Review of DEEP Learning Applications in Hydrology and Water Resources. Water Science and Technology. 82(12): 2635-2670. https://doi.org/10.2166/wst.2020.369
- Woo, S. Y., Jung, C. G., Kim, J. U. and Kim, S. J. (2018). Assessment of Climate Change Impact on Aquatic Ecology Health Indices in Han River Basin using SWAT and Random Forest. Journal of Korea Water Resources Association. 51(10): 863-874. https://doi.org/10.3741/JKWRA.2018.51.10.863