DOI QR코드

DOI QR Code

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property

실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석

  • Kim, Jung Soo (Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
  • 김정수 (한국생산기술연구원 소재부품융합연구부문)
  • Received : 2021.06.17
  • Accepted : 2021.09.13
  • Published : 2021.09.30

Abstract

In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

본 연구에서는 실란기가 도입된 UV 경화형 우레탄 아크릴레이트를 사용하여 투명성 및 접착성/이형성을 갖춘 silver nanoparticle 전사용 접착 조성물을 제조하였다. Silver nanoparticle이 PET 위에 패터닝되어 있는 Ag/PET 필름과 전사 대상인 PC필름 사이에 제조한 접착 조성물을 도포하고 UV로 광경화한 후, PET를 제거하여 Ag/PC 필름을 제조하였다. 실란기가 도입된 UV 경화형 우레탄 아크릴레이트는 polycaprolactone diol (PCL)과 isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), (3-aminopropyl)triethoxysilane (APTES)를 사용하여 합성하였다. APTES의 실란기는 특수 처리된 Ag표면과 반응하여 계면접착력이 개선될 수 있으며, 실란기가 도입된 우레탄 아크릴레이트와 희석제로 투입하는 기능성 아크릴 희석제에 의하여 PC필름과의 접착력을 향상시켰다. 우레탄 아크릴레이트 합성은 FT-IR을 이용하여 분석하였으며, APTES의 몰비와 아크릴 희석제 조성에 따라, 접착 특성과 광학 특성, 전사 특성 등을 비교하였다. 결과적으로, PUA2S1_0.5의 조건으로 제조된 접착 조성물에서 가장 우수한 전사 특성을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산하 한국산업기술평가관리원이 연구 지원한 산업소재 핵심기술개발사업(20004044)의 일환으로 수행되었기에 감사드립니다.

References

  1. He, Z., Zhou, G., Byun, J. H., Lee, S. K., Um, M. K., Park, B. & Chou, T. W., Nanoscale, 11(13), 5884 (2019). https://doi.org/10.1039/c9nr01005j
  2. S.E. Im, S.Y. Kim, S.J. Kim, & J.H. Kim, Applied Chemistry for Engineering, 26(6), 640 (2015). https://doi.org/10.14478/ACE.2015.1105
  3. S.J. Kim, K. Choi, & S.Y. Choi, Korean J. Met. Mater., 53(12), 890 (2015). https://doi.org/10.3365/kjmm.2015.53.12.890
  4. M.H. Chung, S.Y. Kim, D.H. Yoo, & J.H. Kim, Appl. Chem. Eng., 25(3), 240 (2014).
  5. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, & S.H. Ko, Nanoscale, 4(20), 6408 (2012). https://doi.org/10.1039/c2nr31254a
  6. Y.W. Shin, K.B. Kim, S.J. Noh, & S.Y. Soh, Appl. Chem. Eng., 29(2), 162 (2018). https://doi.org/10.14478/ACE.2017.1107
  7. M., Alishiri, A., Shojaei, M. J., Abdekhodaie, & H., Yeganeh, Materials Science and Engineering: C, 42, 763 (2014). https://doi.org/10.1016/j.msec.2014.05.056
  8. Z., Jiao, X., Wang, Q., Yang, & C., Wang, Polymer Bulletin, 74(7), 2497 (2017). https://doi.org/10.1007/s00289-016-1847-4
  9. I. V., Khudyakov, K. W., Swiderski, & R. W., Greer, Journal of Applied Polymer Science, 99(2), 489 (2006). https://doi.org/10.1002/app.22275
  10. Z., Jiao, X., Wang, Q., Yang, & C., Wang, Polymer Bulletin, 74(7), 2497 (2017). https://doi.org/10.1007/s00289-016-1847-4
  11. B. H., Lee, & H. J. Kim, Polymer Degradation and Stability, 91(5), 1025 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.08.002
  12. M. D., Valcic, S. M., Cakic, I. S., Ristic, J. D., Cakic, M. J., Cvetinov, & C. J. Janos, Int. J. Adhesion and Adhesives, 104, 102738 (2021). https://doi.org/10.1016/j.ijadhadh.2020.102738
  13. A., Milinaviciute, V., Jankauskaite, & P., Narmontas, Materials Science, 17(4), 378 (2011).
  14. W., Han, B., Lin, Y., Zhou, & J., Song, Polymer Bulletin, 68(3), 729 (2012). https://doi.org/10.1007/s00289-011-0576-y
  15. W., Han, B., Lin, H., Yang, & X., Zhang, Journal of Applied Polymer Science, 128(6), 4261 (2013). https://doi.org/10.1002/app.38584
  16. L., Han, J., Dai, L., Zhang, S., Ma, J., Deng, R., Zhang, & J., Zhu, RSC Advances, 4(90), 49471 (2014). https://doi.org/10.1039/C4RA08665A
  17. H. A., Mohamed, B. M., Badran, A. M., Rabie, & S. M. M., Morsi, Progress in Organic Coatings, 77(5), 965(2014). https://doi.org/10.1016/j.porgcoat.2014.01.026
  18. H. A., Mohamed, S. M. M., Morsi, B. M., Badran, & A. M. Rabie, Polymer Bulletin, 74(2), 531 (2017). https://doi.org/10.1007/s00289-016-1728-x
  19. Z., Grigale-Sorocina, M., Kalnins, J., Simanovska, E., Vindedze, I., Birks, & E., Brazdauska, Materials Science, 22(1), 54(2016).
  20. J. H., Chun, J. M., Cheon, B. Y., Jeong, & N. J. Jo, Journal of Nanoscience and Nanotechnology, 16(3), 2687 (2016). https://doi.org/10.1166/jnn.2016.11059
  21. S., Shokoohi, A., Arefazar, & R. Khosrokhavar, Journal of Reinforced Plastics and Composites, 27(5), 473 (2008). https://doi.org/10.1177/0731684407081391
  22. S., Ifuku, & H. Yano, International Journal of Biological Macromolecules, 74, 428 (2015). https://doi.org/10.1016/j.ijbiomac.2014.12.029
  23. X., Wang, & M. D. Soucek, Progress in Organic Coatings, 76(7-8), 1057 (2013). https://doi.org/10.1016/j.porgcoat.2013.03.001
  24. F., Liao, X. R., Zeng, H. Q., Li, X. J., Lai, & F. C. Zhao, Journal of Central South University, 19(4), 911 (2012). https://doi.org/10.1007/s11771-012-1092-4