Simplexity in Hydrology: 복잡함과 간단함 사이에서의 균형

  • Published : 2021.09.30

Abstract

Keywords

References

  1. Berne, A., Uijlenhoet, R., & Troch, P. A. (2005). Similarity analysis of subsurface flow response of hillslopes with complex geometry. Water Resources Research, 41, 1-10. https://doi.org/10.1029/2004WR003629
  2. Beven, K. (2006). Searching for the Holy Grail of scientific hydrology: Qt=(S, R, Δt)A as closure. Hydrology and Earth System Sciences, 10(5), 609-618. https://doi.org/10.5194/hess-10-609-2006
  3. Brutsaert, W. (1994). The unit response of groundwater outflow from a hillslope. Water Resources Research, 30(10), 2759-2763. https://doi.org/10.1029/94WR01396
  4. Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637-643. https://doi.org/10.1029/WR013i003p00637
  5. Dooge, J. (1986). Looking for hydrologic laws. Water Resources Research, 22(9S), 46S-58S. http://doi.org/10.1029/WR022i09Sp0046S
  6. Evaristo, J., Kim, M., van Haren, J., Pangle, L. A., Harman, C. J., Troch, P. A., & McDonnell, J. J. (2019). Characterizing the Fluxes and Age Distribution of Soil Water, Plant Water, and Deep Percolation in a Model Tropical Ecosystem. Water Resources Research, 55(4), 3307-3327. https://doi.org/10.1029/2018WR023265
  7. Harman, C. J. (2015). Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed. Water Resources Research, 51, 1-30. https://doi.org/10.1002/2014WR015707
  8. Harman, C. J., & Kim, M. (2019). A low-dimensional model of bedrock weathering and lateral flow coevolution in hillslopes: 1. Hydraulic theory of reactive transport. Hydrological Processes, 33(4), 466-475. https://doi.org/10.1002/hyp.13360
  9. Harman, C. J., & Kim, M. (2014). An efficient tracer test for time-variable transit time distributions in periodic hydrodynamic systems. Geophysical Research Letters, 1567-1575. https://doi.org/10.1002/2013GL058980
  10. Jachens, E. R., Rupp, D. E., Roques, C., & Selker, J. S. (2020). Recession analysis revisited: Impacts of climate on parameter estimation. Hydrology and Earth System Sciences, 24(3), 1159-1170. https://doi.org/10.5194/hess-24-1159-2020
  11. Kim, M., Bauser, H. H., Beven, K., & Troch, P. A. (2021a). Hysteretic behavior of flow recession dynamics: Application of machine learning and learning from the machine. Earth and Space Science Open Archive, 29. https://doi.org/10.1002/essoar.10506592.1
  12. Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H. M., Wang, Y., Harman, C. J., & Troch, P. A. (2016). Transit time distributions and StorAge Selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resources Research, 52(9). https://doi.org/10.1002/2016WR018620
  13. Kim, M., & Troch, P. A. (2020). Transit time distributions estimation exploiting flow-weighted time: Theory and proof-of-concept. Water Resources Research, 56, e2020WR027186. https://doi.org/https://doi.org/10.1029/2020WR027186
  14. Kim, M., Volkmann, T., Aaron, B., Wang, Y., Neto, A. M., Matos, K., Harman, C., & Troch, P. (2021b). Uncovering the hillslope scale flow and transport dynamics in an experimental hydrologic system. Hydrological Processes, 35(8), e14337. https://doi.org/10.1002/hyp.14337
  15. Kim, M., Volkmann, T. H. M., Wang, Y., Harman, C. J., & Troch, P. A. (2020). Direct observation of hillslope scale StorAge Selection functions in an experimental hydrologic system: Geomorphologic structure and the preferential discharge of old water. Earth and Space Science Open Archive, 44. https://doi.org/10.1002/essoar.10504485.1
  16. Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42(3), 1-5. https://doi.org/10.1029/2005WR004362
  17. Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resources Research, 45(2), 1-34. https://doi.org/10.1029/2008WR006912
  18. Kirchner, J. W. (2019). Quantifying new water fractions and transit time distributions using ensemble hydrograph separation : theory and benchmark tests. Hydrology and Earth System Sciences, 23, 303-349. https://doi.org/10.5194/hess-23-303-2019
  19. Klemes, V. (1983). Conceptualization and scale in hydrology. Journal of Hydrology, 65(1-3), 1-23. https://doi.org/10.1016/0022-1694(83)90208-1
  20. Knighton, J., Souter-Kline, V., Volkmann, T., Troch, P. A., Kim, M., Harman, C. J., Morris, C., Buchanan, B., & Walter, M. T. (2019). Seasonal and Topographic Variations in Ecohydrological Separation Within a Small, Temperate, Snow-Influenced Catchment. Water Resources Research, 55(8), 6417-6435. https://doi.org/10.1029/2019WR025174
  21. Maher, K. (2011). The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth and Planetary Sience Letters, 312, 48-58. https://doi.org/10.1016/j.epsl.2011.09.040
  22. Maxwell, R. M., Kollet, S. J., Smith, S. G., Woodward, C. S., Falgout, R. D., Ferguson, I. M., Engdahl, N., Condon, L. E., Lopez, S. R., Gilbert, J., Bearup, L., Jefferson, J., Prubilik, C., Baldwin, C., Bosl, W. J., Hornung, R., & Ashby, S. (2014). ParFlow User's Manual. International Ground Water Modeling Center Report GWMI.
  23. McDonnell, J. J., & Beven, K. (2014). Debates - The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50, 5342-5350. https://doi.org/10.1002/2013WR015141
  24. McGuire, K. J., & McDonnell, J. J. (2006). A review and evaluation of catchment transit time modeling. Journal of Hydrology, 330(3-4), 543-563. https://doi.org/10.1016/j.jhydrol.2006.04.020
  25. Meira Neto, A. A., Kim, M., & Troch, P. A. (2021). Physical interpretation of timevarying StorAge Selection functions in a model hillslope via geophysical imaging of ages of water. Earth and Space Science Open Archive, 47. https://doi.org/10.1002/essoar.10507678.1
  26. Metzler, H., Muller, M., & Sierra, C. A. (2018). Transit-time and age distributions for nonlinear time-dependent compartmental systems. Proceedings of the National Academy of Sciences, 115(6), 1150-1155. https://doi.org/10.1073/pnas.1705296115
  27. Pangle, L. A., DeLong, S. B., Abramson, N., Adams, J., Barron-Gafford, G. A., Breshears, D. D., Brooks, P. D., Chorover, J., Dietrich, W. E., Dontsova, K., Durcik, M., Espeleta, J., Ferre, T. P. A., Ferriere, R., Henderson, W., Hunt, E. A., Huxman, T. E., Millar, D., Murphy, B., ... Zeng, X. (2015). The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes. Geomorphology, 244, 190-203. https://doi.org/10.1016/j.geomorph.2015.01.020
  28. Pangle, L. A., Kim, M., Cardoso, C., Lora, M., Meira Neto, A. A., Volkmann, T. H. M., Wang, Y., Troch, P. A., & Harman, C. J. (2017). The mechanistic basis for storage-dependent age distributions of water discharged from an experimental hillslope. Water Resources Research, 53, 2733-2754. https://doi.org/10.1002/2016WR019901
  29. Parker, E. A., Grant, S. B., Cao, Y., Rippy, M. A., McGuire, K. J., Holden, P. A., Feraud, M., Avasarala, S., Liu, H., Hung, W. C., Rugh, M., Jay, J., Peng, J., Shao, S., & Li, D. (2021). Predicting Solute Transport Through Green Stormwater Infrastructure With Unsteady Transit Time Distribution Theory. Water Resources Research, 57(2), e2020WR028579. https://doi.org/10.1029/2020WR028579
  30. Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., Mcguire, K. J., Velde, Y. Van Der, Bertuzzo, E., & Botter, G. (2015). Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes. Water Resourses Research, 51, 1-8. https://doi.org/10.1002/2015WR017273
  31. Savenije, H. H. G., & Hrachowitz, M. (2017). HESS Opinions "catchments as meta-organisms - A new blueprint for hydrological modelling." Hydrology and Earth System Sciences, 21(2). https://doi.org/10.5194/hess-21-1107-2017
  32. Sivapalan, M. (2003). Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes, 17(5), 1037-1041. https://doi.org/10.1002/hyp.5109
  33. Smith, A. A., Tetzlaff, D., & Soulsby, C. (2018). On the Use of StorAge Selection Functions to Assess Time-Variant Travel Times in Lakes. Water Resources Research, 54(7), 5163-5185. https://doi.org/https://doi.org/10.1029/2017WR021242
  34. Stewart, M. K., Morgenstern, U., Mcdonnell, J. J., & Pfister, L. (2012). The "hidden streamflow" challenge in catchment hydrology: A call to action for stream water transit time analysis. Hydrological Processes, 26(13), 2061-2066. https://doi.org/10.1002/hyp.9262
  35. Tashie, A., Pavelsky, T., & Band, L. E. (2020). An Empirical Reevaluation of Streamflow Recession Analysis at the Continental Scale. Water Resources Research, 56(1), 1-18. https://doi.org/10.1029/2019WR025448
  36. Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon, S. W., Paniconi, C., Pauwels, V. R. N., Rupp, D. E., Selker, J. S., Teuling, A. J., Uijlenhoet, R., & Verhoest, N. E. C. (2013). The importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried Brutsaert and Jean-Yves Parlange. Water Resources Research, 49(9), 5099-5116. https://doi.org/10.1002/wrcr.20407
  37. van der Velde, Y., Heidbuchel, I., Lyon, S. W., Nyberg, L., Rodhe, A., Bishop, K., & Troch, P. a. (2014). Consequences of mixing assumptions for time-variable travel time distributions. Hydrological Processes. https://doi.org/10.1002/hyp.10372
  38. van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. a. T. M., & Uijlenhoet, R. (2012). Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resources Research, 48(6), W06536. https://doi.org/10.1029/2011WR011310
  39. Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment Classification and Hydrologic Similarity. Geography Compass, 1, 1-31. https://doi.org/10.1111/j.1749-8198.2007.00039.x
  40. Wilusz, D. C., Harman, C. J., Ball, W. P., Maxwell, R. M., & Buda, A. R. (2020). Using Particle Tracking to Understand Flow Paths, Age Distributions, and the Paradoxical Origins of the Inverse Storage Effect in an Experimental Catchment. Water Resources Research, 56(4), e2019WR025140. https://doi.org/10.1029/2019WR025140