DOI QR코드

DOI QR Code

Effect of Gamma Irradiation on the Mechanical and Thermal Properties of Biodegradable Packaging Materials

  • 투고 : 2021.07.30
  • 심사 : 2021.08.18
  • 발행 : 2021.08.31

초록

The gamma irradiation was on to Poly(butylene sebacate-co-terephthalate) (PBSeT), Poly(butylene adipate-co-terephthalate) (PBAT), Poly(lactic acid) (PLA) and casting polypropylene (CPP) at dose levels from 0 to 50 kGy. The properties of gamma irradiated samples were analyzed using DSC, TGA, UTM and FT-IR spectra. The mechanical and thermal properties of PBSeT and PBAT after gamma irradiation were less affected than CPP. The tensile strength and elongation of PBSeT was not affected by gamma irradiation, while these of PBAT, PLA and CPP were significantly decreased at 50 kGy gamma-ray dose. The thermal stability of PBSeT, PBAT, PLA and CPP showed a similar tendency to tensile strength. The glass transition temperature(Tg) and melting temperature(Tm) of PBSeT and PBAT were not altered by increasing gamma-ray dose, while these of PLA and CPP decreased. The chemical composition of all samples was not modified by gamma irradiation, and it was confirmed by FT-IR spectra. Based on mechanical and thermal stability studies of gamma irradiation on bioplastics, tested biodegradable packaging materials showed a potential to be used in sterilization process up to 35 kGy.

키워드

과제정보

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program-Technology Innovation Program) (20009837, Development of multilayer film for the manufacture of disposable bioreactor bags for biopharmaceutical production) funded by the Ministry of Trade, Industry & Energy(MOTIE, Korea)

참고문헌

  1. Kim, S. J., Kwak, H. W., Kwon, S., Jang, H., & Park, S. I. 2020. Synthesis, characterization and properties of biodegradable poly (butylene sebacate-co-terephthalate). Polymers. 12(10): 2389. https://doi.org/10.3390/polym12102389
  2. 2019. Reducing UK emissions. 2019 Progress Report to Parliament. Committee on Climate Change
  3. 2020. Global production capacities of bioplastics. European Bioplastics. Nova-Institute.
  4. Liu, W., Zhou, J., Ma, Y., Wang, J., & Xu, J. 2017, December. Fabrication of PLA filaments and its printable performance. In IOP Conference Series: Materials Science and Engineering. 275(1): 012033.
  5. Veiga-Malta, I. 2016. Preventing healthcare-associated infections by monitoring the cleanliness of medical devices and other critical points in a sterilization service. Biomedical instrumentation & Technology. 50(s3): 45-52. https://doi.org/10.2345/0899-8205-50.s3.45
  6. da Silva Aquino, K. A. 2012. Sterilization by gamma irradiation. Gamma radiation. 9: 172-202.
  7. Jipa, I. M. Stroescu, M., Stoica-Guzun, A., Dobre, T., Jinga, S. & Zaharescu, T. 2012. Effect of gamma irradiation on biopolymer composite films of poly (vinyl alcohol) and bacterial cellulose. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 278: 82-87.
  8. Chuaqui-Offermanns, N. 1989. Food packaging materials and radiation processing of food: a brief review. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry. 34(6): 1005-1007.
  9. Parra, D. F., Rodrigues, J. A., & Lugao, A. B. 2005. Use of gamma-irradiation technology in the manufacture of biopolymer-based packaging films for shelf-stable foods. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 236(1-4): 563-566.
  10. Chmielewski, A. G., Haji-Saeid, M., & Ahmed, S. 2005. Progress in radiation processing of polymers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 236(1-4): 44-54. https://doi.org/10.1016/j.nimb.2005.03.247
  11. Benyathiar, P., Selke, S., & Auras, R. 2016. The effect of gamma and electron beam irradiation on the biodegradability of PLA films. Journal of Polymers and the Environment. 24(3): 230-240. https://doi.org/10.1007/s10924-016-0766-7
  12. Zaidi, L., Bruzaud, S., Kaci, M., Bourmaud, A., Gautier, N., & Grohens, Y. 2013. The effects of gamma irradiation on the morphology and properties of polylactide/Cloisite 30B nanocomposites. Polymer degradation and stability. 98(1): 348-355. https://doi.org/10.1016/j.polymdegradstab.2012.09.014
  13. Cunha, E. L., Schimitberger, T., Oliveira, C. M., & Faria, L. O. Investigation of PBAT dosimetric properties for high gamma dose dosimetry.
  14. Kim, S. J., Kwak, H. W., Kwon, S., Jang, H., & Park, S. I. 2021. Characterization of PLA/PBSeT Blends Prepared with Various Hexamethylene Diisocyanate Contents. Materials. 14(1): 197. https://doi.org/10.3390/ma14010197
  15. Madera-Santana, T. J., Melendrez, R., Gonzalez-Garcia, G., Quintana-Owen, P., & Pillai, S. D. (2016). Effect of gamma irradiation on physicochemical properties of commercial poly (lactic acid) clamshell for food packaging. Radiation Physics and Chemistry. 123, 6-13. https://doi.org/10.1016/j.radphyschem.2016.02.001
  16. Han, C., Bian, J., Liu, H., & Dong, L. 2009. Effect of γ-radiation on the thermal and mechanical properties of a commercial poly (butylene adipate-co-terephthalate). Polymer international. 58(6): 691-696. https://doi.org/10.1002/pi.2580
  17. Razavi, S. M., Dadbin, S., & Frounchi, M. 2014. Effect of gamma ray on poly (lactic acid)/poly (vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films. Radiation Physics and Chemistry. 96. pp.12-18. https://doi.org/10.1016/j.radphyschem.2013.08.010
  18. da Silva, C. G., Kano, F. S., & dos Santos Rosa, D. 2019. Thermal stability of the PBAT biofilms with cellulose nanostructures/essential oils for active packaging. Journal of Thermal Analysis and Calorimetry. 138(4): 2375-2386. https://doi.org/10.1007/s10973-019-08190-z
  19. Coppola, B., Cappetti, N., Di Maio, L., Scarfato, P., & Incarnato, L. 2018. 3D printing of PLA/clay nanocomposites: influence of printing temperature on printed samples properties. Materials. 11(10): 1947. https://doi.org/10.3390/ma11101947
  20. Alsabbagh, A., Saleem, R. A., Almasri, R., Aljarrah, S., & Awad, S. (2020). Effects of gamma irradiation on 3D-printed polylactic acid (PLA) and high-density polyethylene (HDPE). Polymer Bulletin. 1-15.
  21. Benyathiar, P., Selke, S. E., Harte, B. R., & Mishra, D. K. 2021. The Effect of Irradiation Sterilization on Poly (Lactic) Acid Films. Journal of Polymers and the Environment. 29(2): 460-471. https://doi.org/10.1007/s10924-020-01892-8
  22. Krupa, I., & Luyt, A. S. 2001. Thermal properties of isotactic polypropylene degraded with gamma irradiation. Polymer degradation and stability. 72(3): 505-508. https://doi.org/10.1016/S0141-3910(01)00052-0
  23. Abiona, A. A., & Osinkolu, A. G. 2010. Gamma-irradiation induced property modification of polypropylene. International Journal of Physical Sciences. 5(7): 960-967.
  24. Rahaman, M. H. A., Khandaker, M. U., Khan, Z. R., Kufian, M. Z., Noor, I. S. M., & Arof, A. K. 2014. Effect of gamma irradiation on poly (vinyledene difluoride)-lithium bis (oxalato) borate electrolyte. Physical Chemistry Chemical Physics. 16(23): 11527-11537. https://doi.org/10.1039/c4cp01233j
  25. Jaisankar, V., Nanthini, R., Karunanidhi, M., & Ravi, A. 2010. Study on biodegradable random copolyesters derived from 1, 4-butane diol, terephthalic acid and adipic acid/sebacic acid. Asian Journal of Chemistry. 22(7): 5077.
  26. Cardoso, E. C., Parra, D. F., Scagliusi, S. R., Sales, R. M., Caviquioli, F., & Lugao, A. B. 2019. Study of bio-based foams prepared from PBAT/PLA reinforced with bio-calcium carbonate and compatibilized with gamma radiation. In Use of Gamma Radiation Techniques in Peaceful Applications: 139.
  27. Zhao, P., Liu, W., Wu, Q., & Ren, J. 2010. Preparation, mechanical, and thermal properties of biodegradable polyesters/poly (lactic acid) blends. Journal of Nanomaterials.
  28. Awale, R. J., Ali, F. B., Azmi, A. S., Puad, N. I. M., Anuar, H., & Hassan, A. 2018. Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers. 10(9): 977. https://doi.org/10.3390/polym10090977