DOI QR코드

DOI QR Code

Difference of Ground Reaction Force and Center of Pressure Parameters according to Levels of Education during Chest Compression Resuscitation

가슴압박소생술 시 교육수준에 따른 지면반력 및 압력중심의 차이

  • Han, KiHoon (Department of Physical Education, Pusan National University) ;
  • Gil, Ho-Jong (FILA Advanced Science and Technology Center) ;
  • Lee, Mi-Kyoung (Division of Kinesiology, Silla University) ;
  • Park, Joonsung (Division of Kinesiology, Silla University) ;
  • Kim, Jongbin (Division of Kinesiology, Silla University)
  • Received : 2021.09.03
  • Accepted : 2021.09.28
  • Published : 2021.09.30

Abstract

Objective: The purpose of this study was to investigate the effect of levels of education on ground reaction force and center of pressure parameters during chest compression resuscitation. Method: Twenty male university students were divided into two groups; certified group (CG, n=10) and non-certified group (NCG, n=10). Two force plates were used to measure ground reaction force and center of pressure parameters during 30 times (three trials) chest compression resuscitation. Independent t-tests were used to compare ground reaction force and center of pressure parameters between two groups. An alpha level of 0.05 was used in all tests. Results: All chest-compression time parameters (total time, 1 systolic time, and diastolic time) in CG were significantly shorter than those in NCG (p<.05). Fy of the diastolic and Fz of the systolic in CG revealed significantly the larger GRF values and Fy of the systolic in CG showed significantly the smaller GRF value (p<.05). The standard deviation of Fz of the systolic and diastolic within the subject during 30 times chest-compression resuscitation revealed significantly the smaller values in CG (p<.05). Conclusion: First, CG performed chest compressions efficiently at an appropriate rate compared to NCG. Second, CG showed lower Fx and Fy values in both the mediolateral and anteroposterior axes compared to NCG, which reduced unnecessary chest-compression force consumption and minimized the movement in patients with cardiac arrest. Third, CG showed high Fz value of the systolic and low Fz value of the diastolic. Based on this, chest compression resuscitation was performed to increase the survival rate of cardiac arrest patients.

Keywords

Acknowledgement

This research was supported by the new professor research funding through Pusan National University (PNU).

References

  1. Abella, B. S., Sandbo, N., Vassilatos, P., Alvarado, J. P., O'Hearn, N., Wigder, H. N., Hoffman, P., Terry, K., Vanden Hoek, T. L. & Becker, L. B. (2005). Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation, 111(4), 428-434. https://doi.org/10.1161/01.CIR.0000153811.84257.59
  2. Announcement of Cardiovascular Disease Survey. (2008). Ministry of Health and Welfare, Korea.
  3. Berg, R. A., Hemphill, R., Abella, B. S., Aufderheide, T. P., Cave, D. M., Hazinski, M. F., Lerner, E. B., Rea, T. D., Sayre, M. R. & Swor, R. A. (2010). Part 5: adult basic life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 122(18_suppl_3), S685-S705.
  4. Cummins, R. O., Ornato, J. P., Thies, W. H. & Pepe, P. E. (1991). Improving survival from sudden cardiac arrest: the "chain of survival" concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation, 83(5), 1832-1847. https://doi.org/10.1161/01.CIR.83.5.1832
  5. Ferdjallah, M., Harris, G. F. & Wertsch, J. J. (1999). Instantaneous postural stability characterization using time-frequency analysis. Gait & Posture, 10(2), 129-134. https://doi.org/10.1016/S0966-6362(99)00023-5
  6. Foo, N. P., Chang, J. H., Lin, H. J. & Guo, H. R. (2010). Rescuer fatigue and cardiopulmonary resuscitation positions: a randomized controlled crossover trial. Resuscitation, 81(5), 579-584. https://doi.org/10.1016/j.resuscitation.2010.02.006
  7. Hasegawa, T., Daikoku, R., Saito, S. & Saito, Y. (2014). Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation. Journal of Physiological Anthropology, 33(1), 1-7. https://doi.org/10.1186/1880-6805-33-1
  8. Heidenreich, J. W., Sanders, A. B., Higdon, T. A., Kern, K. B., Berg, R. A. & Ewy, G. A. (2004). Uninterrupted chest compression CPR is easier to perform and remember than standard CPR. Resuscitation, 63(2), 123-130. https://doi.org/10.1016/j.resuscitation.2004.04.011
  9. Hellevuo, H., Sainio, M., Nevalainen, R., Huhtala, H., Olkkola, K. T., Tenhunen, J. & Hoppu, S. (2013). Deeper chest compression-more complications for cardiac arrest patients. Resuscitation, 84(6), 760-765. https://doi.org/10.1016/j.resuscitation.2013.02.015
  10. Hong, E. J., Cho, B. J. & Kim, G. Y. (2019). Effect of chest compressions on the quality of back pain prevention and chest compressions by applying body stabilization Convergence movement. Journal of the Korea Convergence Society, 10(5), 85-94. https://doi.org/10.15207/JKCS.2019.10.5.085
  11. Idris, A. H., Guffey, D., Aufderheide, T. P., Brown, S., Morrison, L. J., Nichols, P., Powell, P., Daya, M., Bigham, B. L., Atkins, D. L., Berg, R., Davis, D., Stiell, L., Sopko, G. & Nichol, G. (2012). Relationship between chest compression rates and outcomes from cardiac arrest. Circulation, 125(24), 3004-3012. https://doi.org/10.1161/CIRCULATIONAHA.111.059535
  12. Kang, Y. T. & Seo, K. E. (2009). Analysis of Ground Reaction Force by Stance Type during Tennis Forehand Stroke. Korean Journal of Sport Biomechanics, 19(3), 449-455. https://doi.org/10.5103/KJSB.2009.19.3.449
  13. Kim, Y. W. & Kim, Y. J. (2009). Biomechanical comparison of good and bad performances within individual in maximum vertical jump. Korean Journal of Sport Biomechanics, 19(3), 489-497. https://doi.org/10.5103/KJSB.2009.19.3.489
  14. KACPR. (2020). Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Ministry of Health and Welfare, Korea. http://www.kacpr.org/.
  15. Korea Centers for Disease Control and Prevention (2020). National Health Information Portal. https://health.kdca.go.kr/healthinfo/index.jsp
  16. Koster, R. W. (2003). Limiting 'hands-off'periods during resuscitation. Resuscitation, 58(3), 275-276. https://doi.org/10.1016/S0300-9572(03)00270-3
  17. Lee, B. S., Hwang, S. O., Kim, Y. S., Ahn, M. E. & Lim, K. S. (1992). Dispatcher-Assisted Telephone cardiopulmonary Resuscitation. Korean Society of Pediatric Emergency Medicine, 3(2) 75-85.
  18. Lee, M. K., Seo G. E., Gong S. J., Cho Y, S, Han K. H. & Lee K, J. (2019). Kinematic analysis of chest compression resuscitation. Journal of the Korean Society for Data and Information Science, 30(1), 109-118. https://doi.org/10.7465/jkdi.2019.30.1.109
  19. Munro, C. F., Miller, D. I. & Fuglevand, A. J. (1987). Ground reaction forces in running: a reexamination. Journal of Biomechanics, 20(2), 147-155. https://doi.org/10.1016/0021-9290(87)90306-X
  20. Neumann, D. A. (2010). Kinesiology of the musculoskeletal system: Foundations for physical rehabilitation. Philadelpia: Mosby.
  21. Nishiyama, C., Iwami, T., Kawamura, T., Ando, M., Yonemoto, N., Hiraide, A. & Nonogi, H. (2010). Quality of chest compressions during continuous CPR; comparison between chest compression-only CPR and conventional CPR. Resuscitation, 81(9), 1152-1155. https://doi.org/10.1016/j.resuscitation.2010.05.008
  22. Nolan, J. P. (2014). High-quality cardiopulmonary resuscitation. Current Opinion in Critical Care, 20(3), 227-233. https://doi.org/10.1097/MCC.0000000000000083
  23. Parekh, J. N. (2007). Effect of age and cardiopulmonary resuscitation (CPR) techniques on characteristics of muscle fatigue in females trained in CPR administration. The University of Texas at Arlington.
  24. Park, S. K., Ryu, S. H., Kim, J. B., Yoon, S. H. & Ryu, J. S. (2019). Complexity of comparison of center of pressure between fallers and non-fallers during gait. Korean Journal of Sport Biomechanics, 29(2), 1-7.
  25. Rajab, T. K., Pozner, C. N., Conrad, C., Cohn, L. H. & Schmitto, J. D. (2011). Technique for chest compressions in adult CPR. World Journal of Emergency Surgery, 6(1), 1-5. https://doi.org/10.1186/1749-7922-6-1
  26. Ryu, J. (2019). Complexity Pattern of Center of Pressure between Genders via Increasing Running Speed. Korean Journal of Sport Biomechanics, 29(4), 247-254. https://doi.org/10.5103/KJSB.2019.29.4.247
  27. Samson, W., Sanchez, S., Salvia, P., Jan, S. V. S. & Feipel, V. (2014). A portable system for foot biomechanical analysis during gait. Gait & Posture, 40(3), 420-428. https://doi.org/10.1016/j.gaitpost.2014.05.010
  28. Sayre, M., O'Connor, R., Atkins, D., Billi, J., Callaway, C. & Shuster, M. (2010). Part 2: Evidence evaluation and management of potential or perceived conflicts of interest: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 122(3), S657-S664.
  29. Tomlinson, A. E., Nysaether, J., Kramer-Johansen, J., Steen, P. A. & Dorph, E. (2007). Compression force-depth relationship during out-ofhospital cardiopulmonary resuscitation. Resuscitation, 72(3), 364-370. https://doi.org/10.1016/j.resuscitation.2006.07.017
  30. Yannopoulos, D., McKnite, S., Aufderheide, T. P., Sigurdsson, G., Pirrallo, R. G., Benditt, D. & Lurie, K. G. (2005). Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation, 64(3), 363-372. https://doi.org/10.1016/j.resuscitation.2004.10.009
  31. Zuercher, M., Hilwig, R. W., Ranger-Moore, J., Nysaether, J., Nadkarni, V. M., Berg, M. D., Kern, K. B., Sutton. R. & Berg, R. A. (2010). Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Critical Care Medicine, 38(4), 1141. https://doi.org/10.1097/CCM.0b013e3181ce1fe2