DOI QR코드

DOI QR Code

Evaluating fiber-optic cable-soil mechanical coupling using elastoplastic pullout interaction modeling

  • Liu, Su-Ping (School of Earth Sciences and Engineering, Nanjing University) ;
  • Shi, Bin (School of Earth Sciences and Engineering, Nanjing University) ;
  • Zhang, Cheng-Cheng (School of Earth Sciences and Engineering, Nanjing University) ;
  • Gu, Kai (School of Earth Sciences and Engineering, Nanjing University) ;
  • Zhuang, Pei-Zhi (School of Civil Engineering, University of Leeds)
  • Received : 2021.02.19
  • Accepted : 2021.09.14
  • Published : 2021.09.25

Abstract

The mechanical coupling between a fiber-optic cable and surrounding soil is a significant concern in distributed strain sensing-based geotechnical monitoring. In this study, the cable-soil mechanical coupling is quantitatively evaluated using elastoplastic pullout interaction modeling. Data from a laboratory pullout test performed on a 2-mm-diameter tight-buffered cable buried in a sand-gravel-clay mixture are used to validate a documented elastoplastic pullout model. By using cable axial strain profiles and cable-soil relative displacement measurements, two new indices are proposed to quantify the cable-soil mechanical coupling based on this model, in addition to the common interface shear strength proxy. A parametric study is conducted to investigate how the geometrical and mechanical properties of the cable and the cable-soil interface characteristics affect the two indices. Relating the parametric analysis to practical considerations, recommendations are made as to the design of strain-sensing cables for use in field and laboratory scenarios. Furthermore, modification to the elastoplastic pullout model is discussed to better simulate cable-soil pullout interactions. This study demonstrates that the elastoplastic pullout model can be effective in assessing cable-soil interface behavior and mechanical coupling.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC) grants 42030701 and 41427801 to B.S. C.-C.Z. acknowledges support by the Natural Science Foundation of Jiangsu Province grant BK20200217 and the Yuxiu Young Scholars Program of Nanjing University. K.G. acknowledges support by NSFC grant 41977217. S.-P.L. acknowledges support by the Postgraduate Research & Practice Innovation Program of Jiangsu Province grant KYCX19_0048 and the China Scholarship Council. S.-P.L. would like to thank Professor Hai-Sui Yu for his supervision and assistance at the University of Leeds.

References

  1. Al-Khazaali, M. and Vanapalli, S.K. (2019), "Axial force-displacement behaviour of a buried pipeline in saturated and unsaturated sand", Geotechnique, 69(11), 986-1003. https://doi.org/10.1680/jgeot.17.P.116.
  2. Ashtiani, M., Ghalandarzadeh, A., Mahdavi, M. and Hedayati, M. (2018), "Centrifuge modeling of geotechnical mitigation measures for shallow foundations subjected to reverse faulting", Can. Geotech. J., 55(8), 1130-1143. https://doi.org/10.1139/cgj-2017-0093.
  3. ASTM F3079-14. (2014), Standard practice for use of distributed optical fiber sensing systems for monitoring the impact of ground movements during tunnel and utility construction on existing underground utilities, ASTM International, West Conshohocken, PA, U.S.A.
  4. Billon, A., Henault, J.M., Quiertant, M., Taillade, F., Khadour, A., Martin, R.P. and Benzarti, K. (2015), "Qualification of a distributed optical fiber sensor bonded to the surface of a concrete structure: A methodology to obtain quantitative strain measurements", Smart Mater. Struct., 24(11), 115001. https://doi.org/10.1088/0964-1726/24/11/115001
  5. Cai, Y., Esaki, T. and Jiang, Y. (2004), "A rock bolt and rock mass interaction model", Int. J. Rock Mech. Min. Sci., 41(7), 1055-1067. https://doi.org/10.1016/j.ijrmms.2004.04.005.
  6. Friedli, B., Pizzetti, L., Hauswirth, D. and Puzrin, A.M. (2019), "Ground-buried fiber-optic sensors for object identification", J. Geotech. Geoenviron. Eng., 145(2), 04018109. https://doi.org/10.1061/(asce)gt.1943-5606.0002001.
  7. Fu, S.Y., Yue, C.Y., Hu, X. and Mai, Y.W. (2000), "Analyses of the micromechanics of stress transfer in single- and multi-fiber pullout tests", Compos. Sci. Technol., 60(4), 569-579. https://doi.org/10.1016/s0266-3538(99)00157-8.
  8. Habel, W.R. and Krebber, K. (2011), "Fiber-optic sensor applications in civil and geotechnical engineering", Photonic Sensors, 1(3), 268-280. https://doi.org/10.1007/s13320-011-0011-x.
  9. Hauswirth, D., Puzrin, A.M., Carrera, A., Standing, J.R. and Wan, M.S.P. (2014), "Use of fibre-optic sensors for simple assessment of ground surface displacements during tunnelling", Geotechnique, 64(10), 837-842. https://doi.org/10.1680/geot.14.T.009.
  10. Hsueh, C.H. (1992), "Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites VII:improved analyses for bonded interfaces", Mater. Sci. Eng. A, 154(2), 125-132. https://doi.org/10.1016/0921-5093(92)90337-z.
  11. Iten, M. (2011), "Novel application of distributed fiber-optic sensing in geotechnical engineering", Ph.D. Dissertation. ETH Zurich, Zurich, Switzerland.
  12. Iten, M., Puzrin, A.M., Hauswirth, D., Foaleng-Mafang, S., Beugnot, J.C. and Thevenaz, L. (2009), "Study of a progressive failure in soil using BEDS", Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh, U.K., October.
  13. Landis, C.M. and Mcmeeking, R.M. (1999), "A shear-lag model for a broken fiber embedded in a composite with a ductile matrix", Compos. Sci. Technol., 59(3), 447-457. https://doi.org/10.1016/s0266-3538(98)00091-8.
  14. Lanticq, V., Bourgeois, E., Magnien, P., Dieleman, L., Vinceslas, G., Sang, A. and Delepine-Lesoille, S. (2009), "Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system", Measurement Sci. Technol., 20(3), 034018. https://doi.org/10.1088/0957-0233/20/3/034018.
  15. Li, B., Zhang, D., Chen, X., Wang, J. and Shi, B. (2017), "Testing method on performance of deformation coupling between distributed sensing fiber and soil", Geol. J. China Univ., 23(4), 633-639.
  16. Li, C. and Stillborg, B. (1999), "Analytical models for rock bolts", Int. J. Rock Mech. Min. Sci., 36(8), 1013-1029. https://doi.org/10.1016/s1365-1609(99)00064-7.
  17. Liu, S. P., Shi, B., Gu, K., Zhang, C. C., Yang, J. L., Zhang, S. and Yang, P. (2020), "Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: A case study", Nat. Hazards, 103(3), 3043-3061. https://doi.org/10.1007/s11069-020-04118-1.
  18. Liu, S.P., Shi, B., Gu, K., Zhang, C.C., He, J.H., Wu, J.H., and Wei, G. Q. (2021a), "Fiber-optic wireless sensor network using ultra-weak fiber Bragg gratings for vertical subsurface deformation monitoring", Nat. Hazards, 1-17. https://doi.org/10.1007/s11069-021-04932-1.
  19. Liu, S.P., Gu, K., Zhang, C.C. and Shi, B. (2021b), "Experimental research on strain transfer behavior of fiber-optic cable embedded in soil using distributed strain sensing", Int. J. Geomech., 21(10), 04021190. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002155.
  20. Michalowski, R.L. and Zhao, A. (1996), "Failure of fiber-reinforced granular soils", J. Geotech. Eng., 122(3), 226-234. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(226).
  21. Moffat, R.A., Beltran, J.F. and Herrera, R. (2015), "Applications of BOTDR fiber optics to the monitoring of underground structures", Geomech. Eng., 9(3), 397-414. http://doi.org/10.12989/gae.2015.9.3.397.
  22. Mohamad, H., Bennett, P.J., Soga, K., Mair, R.J. and Bowers, K. (2010), "Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement", Geotechnique, 60(12), 927-938. https://doi.org/10.1680/geot.8.P.074.
  23. Naaman, A.E., Namur, G.G., Alwan, J.M. and Najm, H.S. (1991), "Fiber pullout and bond slip. I: Analytical study", J. Struct. Eng., 117(9), 2769-2790. https://doi.org/10.1061/(asce)0733-9445(1991)117:9(2769).
  24. Ni, P., Moore, I.D. and Take, W.A. (2018), "Distributed fibre optic sensing of strains on buried full-scale PVC pipelines crossing a normal fault", Geotechnique, 68(1), 1-17. https://doi.org/10.1680/jgeot.16.P.161.
  25. Pelecanos, L., Soga, K., Elshafie, M.Z.E.B., de Battista, N., Kechavarzi, C., Gue, C.Y., Ouyang, Y. and Seo, H.J. (2018), "Distributed fiber optic sensing of axially loaded bored piles", J. Geotech. Geoenviron. Eng., 144(3), 04017122. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001843.
  26. Puzrin, A. M., Iten, M. and Fischli, F. (2020), "Monitoring of ground displacements using borehole-embedded distributed fibre optic sensors", Quart. J. Eng. Geol. Hydrogeol., 53(1), 31-38. https://doi.org/10.1144/qjegh2018-166.
  27. Schenato, L. (2017), "A review of distributed fibre optic sensors for geo-hydrological applications", Appl. Sci., 7(9), 896. https://doi.org/10.3390/app7090896.
  28. Sharma, M., Samanta, M. and Sarkar, S. (2017), "Laboratory study on pullout capacity of helical soil nail in cohesionless soil", Can. Geotech. J., 54(10), 1482-1495. https://doi.org/10.1139/cgj-2016-0243.
  29. Soga, K., Ewais, A., Fern, J. and Park, J. (2019), Advances in Geotechnical Sensors and Monitoring, in Geotechnical Fundamentals for Addressing New World Challenges, 29-65.
  30. Szwedzicki, T. (2001), "Geotechnical precursors to large-scale ground collapse in mines", Int. J. Rock Mech. Min. Sci., 38(7), 957-965. https://doi.org/10.1016/s1365-1609(01)00062-4.
  31. Tang, C.S., Shi, B. and Zhao, L.Z. (2010), "Interfacial shear strength of fiber reinforced soil", Geotext. Geomembranes, 28(1), 54-62. https://doi.org/10.1016/j.geotexmem.2009.10.001.
  32. Tehrani, F.S., Han, F., Salgado, R., Prezzi, M., Tovar, R.D. and Castro, A.G. (2016), "Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand", Geotechnique, 66(5), 386-400. https://doi.org/10.1680/jgeot.15.P.007.
  33. Wang, J.C., Zhu, H.H., Shi, B. and Garg, A. (2020), "Strain-based stability analysis of locally loaded slopes under variable conditions", Geomech. Eng., 23(3), 289-300. https://doi.org/10.12989/gae.2020.23.3.289.
  34. Winters, K.E., Quinn, M.C. and Taylor, O.D.S. (2020), "Assessing the frictional resistance between fiber-optic sensor cable and different soil types", Proceedings of the Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization, Minneapolis, Minnesota, U.S.A., February.
  35. Wu, J., Jiang, H., Su, J., Shi, B., Jiang, Y. and Gu, K. (2015), "Application of distributed fiber optic sensing technique in land subsidence monitoring", J. Civ. Struct. Health Monit., 5(5), 587-597. https://doi.org/10.1007/s13349-015-0133-8.
  36. Yang, X.L. and Wang, H.Y. (2018), "Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement", Geomech. Eng., 15(1), 621-630. https://doi.org/10.12989/GAE.2018.15.1.621.
  37. Zhang, C.C., Shi, B., Gu, K., Liu, S.P., Wu, J.H., Zhang, S., Zhang, L., Jiang, H.T. and Wei, G.Q. (2018a), "Vertically distributed sensing of deformation using fiber optic sensing", Geophys. Res. Lett., 45(21), 11732-11741. https://doi.org/10.1029/2018gl080428.
  38. Zhang, C.C., Shi, B., Zhu, H.H., Wang, B.J. and Wei, G.Q. (2020), "Toward distributed fiber-optic sensing of subsurface deformation: A theoretical quantification of ground-borehole-cable interaction", J. Geophys. Res. Solid Earth, 125(3), e2019JB018878. https://doi.org/10.1029/2019JB018878.
  39. Zhang, C. C., Zhu, H. H., Liu, S. P., Shi, B. and Zhang, D. (2018b), "A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements", Eng. Geol., 234, 83-96. https://doi.org/10.1016/j.enggeo.2018.01.002.
  40. Zhang, C.C., Zhu, H.H. and Shi, B. (2016), "Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement", Sci. Reports, 6, 36469. https://doi.org/10.1038/srep36469.