DOI QR코드

DOI QR Code

Nonlinear creep damage model of rock salt considering temperature effect and its implement in FLAC3D

  • Huang, Tianzhu (College of Civil Engineering and Architecture, China Three Gorges University) ;
  • Li, Jianlin (College of Civil Engineering and Architecture, China Three Gorges University) ;
  • Zhao, Baoyun (Graduate Office, Chongqing University of Science and Technology)
  • Received : 2021.06.01
  • Accepted : 2021.09.27
  • Published : 2021.09.25

Abstract

Laboratory tests were carried out to study the effect of temperature on the long-term strength of rock salt, the creep modulus was defined and the evolution equation of creep thermal damage of rock salt was established. Based on the creep test results of rock salt, a nonlinear thermal visco-plastic damage model considering the influence of temperature damage and expressing the accelerated creep behavior of rock salt is established. According to the construction method of nonlinear creep model, a new nonlinear visco-elastic-plastic creep damage model considering the influence of temperature (nonlinear T-VEPD creep model) is established by concatenating the nonlinear thermal visco-plastic damage model with the Burgers creep model. And then the parameter inversion identification of the model, the results show that the model can well describe the creep properties of rock salt. The finite difference expression of nonlinear T-VEPD creep model is derived by using finite difference theory. The dynamic link calculation program (.dll) of the model is obtained by using the programming and FLAC3D secondary development interface, and then the creep model is verified by laboratory test simulation.

Keywords

Acknowledgement

The authors gratefully acknowledge financial support from the Chongqing Research Program of Basic Research and Frontier Technology (cstc2016jcyjA0302), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1713324), Sponsored by Research Fund for Excellent Dissertation of China Three Gorges University (2021BSPY015).

References

  1. Cheon, D.S. and Jung, Y.B. (2017), "Analysis of acoustic emission signals during long-term strength tests of brittle materials", Tunn. Undergr. Sp. Technol., 27(3), 121-131. https://doi.org/10.7474/TUS.2017.27.3.121.
  2. Eslami Andargoli, M. B., Shahriar, K., Ramezanzadeh, A. and Goshtasbi, K. (2018), "The analysis of dates obtained from long-term creep tests to determine creep coefficients of rock salt", B. Eng. Geol. Environ., 78(3), 1617-1629. https://doi.org/10.1007/s10064-018-1243-4.
  3. Fahimifar, A., Tehrani, F.M., Hedayat, A. and Vakilzadeh, A. (2010), "Analytical solution for the excavation of circular tunnels in a visco-elastic burger's material under hydrostatic stress field", Tunn. Undergr. Sp. Technol., 25(4), 297-304. https://doi.org/10.1016/j.tust.2010.01.002.
  4. Haupt, M. (1991), "A constitutive law for rock salt based on creep and relaxation tests", Rock Mech. Rock Eng., 24(4), 179-206. https://doi.org/10.1007/BF01045031.
  5. Hosseini, E., Holdsworth, S.R. and Mazza, E. (2012), "Creep constitutive model considerations for high-temperature finite element numerical simulations", J. Strain Anal. Eng. Des., 47(6), 341-349. https://doi.org/10.1177/0309324712450542.
  6. Istvan, J.A., Evans, L.J., Weber, J.H. and Devine, C. (1997), "Rock mechanics for gas storage in bedded salt caverns", Int. J. Rock Mech. Min. Sci., 34(3-4), 647-647. https://doi.org/10.1016/s1365-1609(97)00108-1.
  7. Gray, V. and Whittaker, M. (2015), "Development and assessment of a new empirical model for predicting full creep curves", Materials, 8(7), 4582-4592. https://doi.org/10.3390/ma8074582.
  8. Khaledi, K., Mahmoudi, E., Datcheva, M. and Schanz, T. (2016), "Analysis of compressed air storage caverns in rock salt considering thermo-mechanical cyclic loading", Environ. Earth Sci., 75(15), 1-17. https://doi.org/10.1007/s12665-016-5970-1.
  9. Ladanyi, B. (2006), "Creep of frozen slopes and ice-filled rock joints under temperature variation", Can. J. Civ. Eng., 33(6), 719-725. https://doi.org/10.1139/l05-112.
  10. Leoni, M., Karstunen, M. and Vermeer, P. A. (2008), "Anisotropic creep model for soft soils", Geotechnique, 58(3), 215-226. https://doi.org/10.1680/geot.2008.58.3.215.
  11. Lv, S., Wang, W. and Liu, H. (2019), "A creep damage constitutive model for a rock mass with nonpersistent joints under uniaxial compression", Math. Prob. Eng., 1-11. https://doi.org/10.1155/2019/4361458.
  12. Lyakhovsky, V., Hamiel, Y. and Ben-Zion, Y. (2011), "A non-local visco-elastic damage model and dynamic fracturing", J. Mech. Phys. Solids, 59(9), 1752-1776. https://doi.org/10.1016/j.jmps.2011.05.016.
  13. Madurapperuma, M.A.K. and Puswewala, U.G. (2008), "Numerical implementation of a constitutive model for soil creep", J. Mech. Mater. Struct., 3(10), 1857-1874. https://doi.org/10.2140/jomms.2008.3.1857.
  14. Mortazavi, A. and Nasab, H. (2016), "Analysis of the behavior of large underground oil storage caverns in salt rock", In. J. Numer. Anal. Meth. Geomech., 41(4), 602-624. https://doi.org/10.1002/nag.2576.
  15. Nara, Y., Yamanaka, H., Oe, Y. and Kaneko, K. (2013), "Influence of temperature and water on subcritical crack growth parameters and long-term strength for igneous rocks", Geophys. J. Int., 193(1), 47-60. https://doi.org/10.1093/gji/ggs116.
  16. Nazary Moghadam, S., Nazokkar, K., Chalaturnyk, R.J. and Mirzabozorg, H. (2015), "Parametric assessment of salt cavern performance using a creep model describing dilatancy and failure", Int. J. Rock Mech. Min. Sci., 79, 250-267. https://doi.org/10.1016/j.ijrmms.2015.06.012.
  17. Obst, K. (2019), "From salt mining and hydrocarbon exploration towards geothermal use and natural gas storage in the eastern part of the North German Basin", Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften, 170(3-4), 357-380. https://doi.org/10.1127/zdgg/2019/0207.
  18. Okuka, A.S. and Zorica, D. (2019), "Fractional Burgers models in creep and stress relaxation tests", Appl. Math. Modell., 77, 1894-1935. https://doi.org/10.1016/j.apm.2019.09.035.
  19. Pestrenin, V.M. and Pestrenina, I.V. (2010), "Nonlinear hereditary model of the prestressed salt rocks", J. Min. Sci., 46(1), 21-27. https://doi.org/10.1007/s10913-010-0003-z.
  20. Schubnel, A., Benson, P.M., Thompson, B.D., Hazzard, J.F. and Young, R.P. (2006), "Quantifying Damage, Saturation and Anisotropy in Cracked Rocks by Inverting Elastic Wave Velocities", Pure Appl. Geophys., 163(5-6), 947-973. https://doi.org/10.1007/s00024-006-0061-y.
  21. Sharifzadeh, M., Tarifard, A. and Moridi, M.A. (2013), "Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method", Tunn. Undergr. Sp. Technol., 38, 348-356. https://doi.org/10.1016/j.tust.2013.07.014.
  22. Shkuratnik, V.L., Kravchenko, O.S. and Filimonov, Y.L. (2019), "Stresses and temperature affecting acoustic emission and rheological characteristics of rock salt", J. Min. Sci., 55(4), 531-537. https://doi.org/10.1134/s1062739119045879.
  23. Zhang, H., Wang, Z., Zheng, Y., Duan, P. and Ding, S. (2012), "Study on tri-axial creep experiment and constitutive relation of different rock salt", Safety Sci., 50(4), 801-805. https://doi.org/10.1016/j.ssci.2011.08.030.
  24. Zhao, B.Y., Huang, T.Z., Liu, D.Y., Liu, Y., Wang, X.P., Liu, S. and Yu, G.B. (2019), "Study on the mechanical properties test and constitutive model of rock salt", Geomech. Eng., 18(3), 291-298. https://doi.org/10.12989/gae.2019.18.3.291.
  25. Zhao, M. and Koves, W. (2012), "Isochronous stress-strain method with general state of stress and variable loading conditions for creep evaluation", J. Pressure Vessel Technol., 134(5), 051205. https://doi.org/10.1115/1.4007038.
  26. Zahoor, M. and Puri, S. (2018), "Non-local continuum ductile damage model for rocks under high pressure and high temperature (HPHT)", J. Petrol. Sci. Eng., 170, 655-663. https://doi.org/10.1016/j.petrol.2018.06.090.
  27. Zuo, Y.Y., Han, H., Hu, H., Luo, S.Y., Zhang, Y. and Chen, X.M. (2018), "Visco-elastic-Plastic creep constitutive relation of tunnels in soft schist", Geotech. Geol. Eng., 36(1), 389-400. https://doi.org/10.1007/s10706-017-0333-6.