References
- Abdelmoety, A.K., Naga, T.H.A. and Rashed, Y.F. (2020), "Isogeometric boundary integral formulation for Reissner's plate problems", Eng. Comput. (Swansea, Wales), 37(1), 21-53. https://doi.org/10.1108/EC-11-2018-0507.
- Allaire, G., Jouve, F. and Toader, A.M. (2004), "Structural optimization using sensitivity analysis and a level-set method", J. Comput. Phys., 194(1), 363-393. https://doi.org/10.1016/j.jcp.2003.09.032.
- Beirao Da Veiga, L., Hughes, T.J.R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A. and Speleers, H. (2015), "A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS", Math. Model. Meth. Appl. Sci., 25(8), 1519-1551. https://doi.org/10.1142/S0218202515500402.
- Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three-layered artificial material model", Adv. Eng. Softw., 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3.
- Bendsoe, M.P. (1982), "Some smear-out models for integrally stiffened plates with applications to optimal design", Proc. Int. Symp. on Optimum Structural Design, Tucson, Arizona.
- Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Meth. Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bourgeat, A. and Tapiero, R. (1983), "Homogenization of a transversely perforated plate in the frame of mindlin, hencky theory, in the thermoelastic case with non uniformly oscillating coefficients", Comptes Rendus De L Academie Des Sciences Serie I-Mathematique., 297(3), 213-216.
- Cheng, K.T. and Olhoff, N. (1981), "An investigation concerning optimal design of solid elastic plates", Int. J. Solid. Struct., 17(3), 305-323. https://doi.org/10.1016/0020-7683(81)90065-2.
- Cottrell, J.A., Hughes, T.J. and Bazilevs, Y. (2009), Isogeometric Analysis: Toward Integration of CAD and FEA, John Wiley & Sons.
- Da Veiga, L.B., Buffa, A., Lovadina, C., Martinelli, M. and Sangalli, G. (2012), "An isogeometric method for the Reissner-Mindlin plate bending problem", Comput. Meth. Appl. Mech. Eng., 209-212, 45-53. https://doi.org/10.1016/j.cma.2011.10.009.
- Dunning, P.D., Ovtchinnikov, E., Scott, J. and Kim, H.A. (2016), "Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver", Int. J. Numer. Meth. Eng., 107(12), 1029-1053. https://doi.org/10.1002/nme.5203.
- Dunning, P.D. and Kim, H.A. (2015), "Introducing the sequential linear programming level-set method for topology optimization", Struct. Multidisc. Optim., 51(3), 631-643. https://doi.org/10.1007/s00158-014-1174-z.
- Hinton, E. and Owen, D.R. (1981), "Finite elements in plasticity: Theory and practice", Appl. Ocean Res., 3(3), 149. https://doi.org/10.1016/0141-1187(81)90117-6.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
- Jahangiry, H.A. and Tavakkoli, S.M. (2017), "An isogeometrical approach to structural level set topology optimization", Comput. Meth. Appl. Mech. Eng., 319, 240-257. https://doi.org/10.1016/j.cma.2017.02.005.
- Kansa, E.J., Power, H., Fasshauer, G.E. and Ling, L. (2004), "A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation", Eng. Anal. Bound. Elem., 28, 1191-1206. https://doi.org/10.1016/j.enganabound.2004.01.004.
- Lee, S.J. and Kim, H.. (2013), "Vibration and buckling of thick plates using isogeometric approach", Arch. Res., 15(1), 35-42. https://doi.org/10.5659/aikar.2013.15.1.35.
- Lee, U. and Shin, J. (2002), "A frequency response function-based structural damage identification method", Comput. Struct., 80(2), 117-132. https://doi.org/10.1016/S0045-7949(01)00170-5.
- Li, X., Zhang, J. and Zheng, Y. (2013), "NURBS-based isogeometric analysis of beams and plates using high order shear deformation theory", Math. Prob. Eng., 2013, Article ID 159027. https://doi.org/10.1155/2013/159027.
- Liu, N., Johnson, E.L., Rajanna, M.R., Lua, J., Phan, N. and Hsu, M.C. (2021), "Blended isogeometric Kirchhoff-Love and continuum shells", Comput. Meth. Appl. Mech. Eng., 385, 114005. https://doi.org/10.1016/j.cma.2021.114005.
- Liu, N., Beata, P.A. and Jeffers, A.E. (2019), "A mixed isogeometric analysis and control volume approach for heat transfer analysis of nonuniformly heated plates", Numer. Heat Transf., Part B: Fundament., 75(6), 347-362. https://doi.org/10.1080/10407790.2019.1627801.
- Liu, N. and Jeffers, A.E. (2017), "Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory", Compos. Struct., 176, 143-153. https://doi.org/10.1016/j.compstruct.2017.05.037.
- Liu, N. and Jeffers, A.E. (2018), "A geometrically exact isogeometric Kirchhoff plate: Feature-preserving automatic meshing and C1 rational triangular Bezier spline discretizations", Int. J. Numer. Meth. Eng., 115(3), 395-409. https://doi.org/10.1002/nme.5809.
- Liu, N., Ren, X. and Lua, J. (2020), "An isogeometric continuum shell element for modeling the nonlinear response of functionally graded material structures", Compos. Struct., 237, 111893. https://doi.org/10.1016/j.compstruct.2020.111893.
- Lurie, K.A. and Cherkaev, A. (1976), "On applying {Prager}'s theorem to the problems of optimal design of thin plates", Mech. Solid., 11(6), 157-159.
- Morse, B.S., Yoo, T.S., Rheingans, P., Chen, D.T. and Subramanian, K.R. (2005), "Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions", ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005. https://doi.org/10.1145/1198555.1198645.
- Nakazawa, Y., Kogiso, N., Yamada, T. and Nishiwaki, S. (2016), "Robust topology optimization of thin plate structure under concentrated load with uncertain load position", J. Adv. Mech. Des. Syst. Manuf., 10(4), 1-12. https://doi.org/10.1299/JAMDSM.2016JAMDSM0057.
- Olhoff, N., Lurie, K.A., Cherkaev, A.V. and Fedorov, A.V. (1981), "Sliding regimes and anisotropy in optimal design of vibrating axisymmetric plates", Int. J. Solid. Struct., 17(10), 931-948. https://doi.org/10.1016/0020-7683(81)90032-9.
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.
- Otomori, M., Yamada, T., Izui, K. and Nishiwaki, S. (2015), "Matlab code for a level set-based topology optimization method using a reaction diffusion equation", Struct. Multidisc. Optim., 51(5), 1159-1172. https://doi.org/10.1007/s00158-014-1190-z.
- Piegl, L. and Tiller, W. (1977), The NURBS Book, New York Tech Science Press, USA.
- Sethian, J.A. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163(2), 489-528. https://doi.org/10.1006/jcph.2000.6581.
- Soto, C.A. and Diaz, A.R. (1993), "Optimum layout and shape of plate structures using homogenization", Topol. Des. Struct., 407-420. https://doi.org/10.1007/978-94-011-1804-0_29.
- Suzuki, K. and Kikuchi, N. (1991), "Generalized layout optimization of three-dimensional shell structures", Proceedings of the Conference on Design Theory, SIAM, Ed. V, Komkov, V., Philadelphia.
- Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012). "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Meth. Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282.
- Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Meth. Appl. Mech. Eng., 192(1-2), 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5.
- Wang, S.Y., Lim, K.M., Khoo, B.C. and Wang, M.Y. (2007), "An extended level set method for shape and topology optimization", J. Comput. Phys., 221(1), 395-421. https://doi.org/10.1016/j.jcp.2006.06.029.
- Wang, Y. and Benson, D.J. (2016), "Isogeometric analysis for parameterized LSM-based structural topology optimization", Comput. Mech., 57(1), 19-35. https://doi.org/10.1007/s00466-015-1219-1.
- Wei, P., Li, Z., Li, X. and Wang, M.Y. (2018), "An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions", Struct. Multidisc. Optim., 58(2), 831-849. https://doi.org/10.1007/s00158-018-1904-8.
- Wei, P. and Wang, M.Y. (2006), "The augmented lagrangian method in structural shape and topology optimization with RBF based level set method", Proceedings of the Fourth China-Japan-Korea Joint symposium on Optimization of Structural and Mechanical Systems, Kunming, November.
- Yamada, T., Izui, K., Nishiwaki, S. and Takezawa, A. (2010), "A topology optimization method based on the level set method incorporating a fictitious interface energy", Comput. Meth. Appl. Mech. Eng., 199(45-48), 2876-2891. https://doi.org/10.1016/j.cma.2010.05.013.