DOI QR코드

DOI QR Code

Hygrothermal stress analysis of laminated composite porous plates

  • Yuksel, Y.Z. (Department of Civil Engineering, Bursa Technical University) ;
  • Akbas, S.D. (Department of Civil Engineering, Bursa Technical University)
  • 투고 : 2021.03.02
  • 심사 : 2021.07.08
  • 발행 : 2021.10.10

초록

This paper presents the stress analysis of a composite laminated simply supported plate with porosity under hygrothermal rising. In the displacement-strain relation of the plate structure, the first shear plate deformation theory is used. Material properties of laminas are considered as orthotropic. Three different porosity distributions are used. In the solution process, the Navier method is implemented for simply supported laminated composite plate. Non-uniform temperature and moisture rising are considered for laminated plate with three laminas. In the numerical results, the stress distributions of the laminated plate are presented and discussed for different values of moisture, temperature, stacking sequence of laminas and orientation angle of layers. The numerical results show that the hygrothermal condition is very effective in the stress behavior of laminated plates.

키워드

참고문헌

  1. Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
  2. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using n th-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  3. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  4. Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
  5. Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
  6. Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
  7. Akbas, S.D. (2017d), "Nonlinear static analysis of fuctionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
  8. Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
  9. Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  10. Akbas, S.D. (2019a), "Hygrothermal post buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
  11. Akbas, S.D. (2019b), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
  12. Akbas, S.D. (2019c), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
  13. Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  14. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  15. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
  16. Amoushahi, H. and Goodarzian, F. (2018), "Dynamic and buckling analysis of composite laminated plates with and without strip delamination under hygrothermal effects using finite strip method", Thin Wall. Struct., 131, 88-101. https://doi.org/10.1016/j.tws.2018.06.030.
  17. Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated plates", Int. J. Solid. Struct., 44, 8119- 8142. https://doi.org/10.1016/j.ijsolstr.2007.06.004.
  18. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/cac.2020.25.4.311.
  19. Benkhedda, A., Tounsi, A. and AddaBedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82, 623-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
  20. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.
  21. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  22. Chandrappa, G.T., Steunou, N. and Livage, J. (2002), "Macroporous crystalline vanadium oxide foam", Nature, 416(6882), 702-702. https://doi.org/10.1038/416702a.
  23. Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142(12), 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  24. Cinefra, M., Petrolo, M., Li, G. and Carrera, E. (2017), "Variable kinematic shell elements for composite laminates accounting for hygrothermal effects", J. Therm. Stress., 40(12), 1523-1544. https://doi.org/10.1080/01495739.2017.1360165.
  25. Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
  26. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  27. Draiche, K., Tounci, A. and Mahamoud, S.R. (2016), "A refined theory with stretching effect for the flexural analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
  28. Ghayesh, M.H. (2019a), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solid., 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
  29. Ghayesh, M.H. (2019b), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
  30. Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid. Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.
  31. Ghayesh, M.H., Kazemirad, S., Darabi, M.A. and Woo, P. (2012), "Thermo-mechanical nonlinear vibration analysis of a springmass-beam system", Arch. Appl. Mech., 82(3), 317-331. https://doi.org/10.1007/s00419-011-0558-4.
  32. Gupta, A. and Talha, M. (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Bas. Des. Struct. Mach., 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656.
  33. Hunungare, P. (2017), "Numerical analysis of hygrothermal effect on laminated composite plates", Int. Res. J. Eng. Technol., 4(11), 1984-1991.
  34. Khodjet-Kesba, M., Addabedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates", Steel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057.
  35. Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
  36. Lo, S.H., Zhen, W., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92, 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034.
  37. Merdaci, S. and Mostefa, A.H. (2020), "Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory", Frattura ed Integrita Strutturale, 14(51), 199-214. https://doi.org/10.3221/IGF-ESIS.51.16.
  38. Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713.
  39. Naik, N.S. and Sayyad, A.S. (2020), "Analysis of laminated plates subjected to mechanical and hygrothermal environmental loads using fifth-order shear and normal deformation theory", Int. J. Appl. Mech., 12(3), 2050028. https://doi.org/10.1142/S1758825120500283.
  40. Natarajan, S., Deogekar, P.S., Manickam, G. and Belouettar, S. (2014), "Hygrothermal effects on the free vibration and buckling of laminated composites with cutouts", Compos. Struct., 108, 848-855. https://doi.org/10.1016/j.compstruct.2013.10.009.
  41. Panda, H.S., Sahu, S.K. and Parhi, P.K. (2013), "Hygrothermal effects on free vibration of delaminated woven fiber composite plates-numerical and experimental results", Compos. Struct., 96, 502-513. https://doi.org/10.1016/j.compstruct.2012.08.057.
  42. Parhi, P.K., Bhattacharyya, S.A. and Sinha, P.K. (2001), "Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells", J. Sound Vib., 248(2), 195-214. https://doi.org/10.1006/jsvi.2000.3506.
  43. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25+34. https://doi.org/10.1016/S0263-8223(01)00182-9.
  44. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press
  45. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/scs.2019.33.1.081.
  46. Sai Ram, K.S. and P.K. (1992a), "Hygrothermal effects on the free vibration of laminated composite plates", J. Sound Vib., 158(l), 133-148. https://doi.org/10.1016/0022-460X(92)90669-O.
  47. Sai Ram, K.S. and Sinha, P.K. (1992a), "Hygrothermal effects on the buckling of laminated composite plates", Compos. Struct., 21, 233-247. https://doi.org/10.1016/0263-8223(92)90051-D.
  48. Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B: Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
  49. Shen, H.S. (2001a), "Hygrothermal effects on the postbuckling of shear deformable laminated plates", Int. J. Mech. Sci., 43, 1259-1281. https://doi.org/10.1016/S0020-7403(00)00058-8.
  50. Shen, H.S. (2001b), "The effects of hygrothermal conditions on the postbuckling of shear deformable laminated cylindrical shells", Int. J. Solid. Struct., 38, 6357-6380. https://doi.org/10.1016/S0020-7683(01)00123-8.
  51. Shen, H.S. (2002), "Hygrothermal effects on the postbuckling of axially loaded shear deformable laminated cylindrical panels", Compos. Struct., 56, 73-85. https://doi.org/10.1016/S0263-8223(01)00187-8.
  52. Singh, B.N. and Verma, V.K. (2009), "Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties", J. Reinf. Plast. Compos., 28(4), 409-427. https://doi.org/10.1177/0731684407084991.
  53. Singh, S.K. and Chakrabarti, A. (2017), "Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory", Steel Compos. Struct., 23(1), 41-51. https://doi.org/10.12989/scs.2017.23.1.041.
  54. Suganyadevi, S. and Singh, B.N. (2016), "Higher order closedform solution for the analysis of laminated composite andsandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
  55. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  56. Wang, X., Dong, K. and Wang, X.Y. (2005), "Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators", Compos. Struct., 71, 220-228. https://doi.org/10.1016/j.compstruct.2004.10.004.
  57. Wang, Y.Q. and Zu, J.W. (2018), "Vibration characteristics of moving sigmoid functionally graded plates containing porosities", Int. J. Mech. Mater. Des., 14(4), 473-489. https://doi.org/10.1007/s10999-017-9385-2.
  58. Whitney, J.M. and Ashton, J.E. (1971), "Effect of environment on the elastic response of layered composite plates", AIAA J., 9, 1708-1713. https://doi.org/10.2514/3.49976.
  59. Wosu, S.N., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Compos. Part B: Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045.
  60. Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci., 10(3), 176-189. https://doi.org/10.24107/ijeas.456755.
  61. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
  62. Zenkour, A.M. (2012), "Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory", Compos. Struct., 94(12), 3685-3696. https://doi.org/10.1016/j.compstruct.2012.05.033
  63. Zenkour, A.M. (2020), "Quasi-3D refined theory for functionally graded porous plates: displacements and stresses", Phys. Mesomech., 23(1), 39-53. https://doi.org/10.1016/j.compstruct.2018.05.147.