References
- Abazid, M.A., Alotebi, M.S. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.
- Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using n th-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol., Tran. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y.
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Akbas, S.D. (2017a), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155. https://doi.org/10.24107/ijeas.322375.
- Akbas, S.D. (2017b), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Akbas, S.D. (2017d), "Nonlinear static analysis of fuctionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.
- Akbas, S.D. (2018a), "Geometrically nonlinear analysis of functionally graded porous beams", Wind Struct., 27(1), 59-70. https://doi.org/10.12989/was.2018.27.1.059.
- Akbas, S.D. (2018b), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Akbas, S.D. (2019a), "Hygrothermal post buckling analysis of laminated composite beams", Int. J. Appl. Mech., 11(1), 1950009. https://doi.org/10.1142/S1758825119500091.
- Akbas, S.D. (2019b), "Longitudinal forced vibration analysis of porous a nanorod", Muhendislik Bilimleri ve Tasarim Dergisi, 7(4), 736-743. https://doi.org/10.21923/jesd.553328.
- Akbas, S.D. (2019c), "Nonlinear static analysis of laminated composite beams under hygro-thermal effect", Struct. Eng. Mech., 72(4), 433-441. https://doi.org/10.12989/sem.2019.72.4.433.
- Akbas, S.D. (2019d), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.
- Amoushahi, H. and Goodarzian, F. (2018), "Dynamic and buckling analysis of composite laminated plates with and without strip delamination under hygrothermal effects using finite strip method", Thin Wall. Struct., 131, 88-101. https://doi.org/10.1016/j.tws.2018.06.030.
- Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated plates", Int. J. Solid. Struct., 44, 8119- 8142. https://doi.org/10.1016/j.ijsolstr.2007.06.004.
- Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/cac.2020.25.4.311.
- Benkhedda, A., Tounsi, A. and AddaBedia, E.A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82, 623-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
- Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
- Chandrappa, G.T., Steunou, N. and Livage, J. (2002), "Macroporous crystalline vanadium oxide foam", Nature, 416(6882), 702-702. https://doi.org/10.1038/416702a.
- Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142(12), 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Cinefra, M., Petrolo, M., Li, G. and Carrera, E. (2017), "Variable kinematic shell elements for composite laminates accounting for hygrothermal effects", J. Therm. Stress., 40(12), 1523-1544. https://doi.org/10.1080/01495739.2017.1360165.
- Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B: Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Draiche, K., Tounci, A. and Mahamoud, S.R. (2016), "A refined theory with stretching effect for the flexural analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.
- Ghayesh, M.H. (2019a), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech.-A/Solid., 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
- Ghayesh, M.H. (2019b), "Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
- Ghayesh, M.H., Amabili, M. and Paidoussis, M.P. (2012), "Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses", J. Fluid. Struct., 34, 1-13. https://doi.org/10.1016/j.jfluidstructs.2012.05.003.
- Ghayesh, M.H., Kazemirad, S., Darabi, M.A. and Woo, P. (2012), "Thermo-mechanical nonlinear vibration analysis of a springmass-beam system", Arch. Appl. Mech., 82(3), 317-331. https://doi.org/10.1007/s00419-011-0558-4.
- Gupta, A. and Talha, M. (2018), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Bas. Des. Struct. Mach., 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656.
- Hunungare, P. (2017), "Numerical analysis of hygrothermal effect on laminated composite plates", Int. Res. J. Eng. Technol., 4(11), 1984-1991.
- Khodjet-Kesba, M., Addabedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates", Steel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057.
- Li, K., Wu, D., Chen, X., Cheng, J., Liu, Z., Gao, W. and Liu, M. (2018), "Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130. https://doi.org/10.1016/j.compstruct.2018.07.059.
- Lo, S.H., Zhen, W., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92, 633-646. https://doi.org/10.1016/j.compstruct.2009.09.034.
- Merdaci, S. and Mostefa, A.H. (2020), "Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory", Frattura ed Integrita Strutturale, 14(51), 199-214. https://doi.org/10.3221/IGF-ESIS.51.16.
- Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713.
- Naik, N.S. and Sayyad, A.S. (2020), "Analysis of laminated plates subjected to mechanical and hygrothermal environmental loads using fifth-order shear and normal deformation theory", Int. J. Appl. Mech., 12(3), 2050028. https://doi.org/10.1142/S1758825120500283.
- Natarajan, S., Deogekar, P.S., Manickam, G. and Belouettar, S. (2014), "Hygrothermal effects on the free vibration and buckling of laminated composites with cutouts", Compos. Struct., 108, 848-855. https://doi.org/10.1016/j.compstruct.2013.10.009.
- Panda, H.S., Sahu, S.K. and Parhi, P.K. (2013), "Hygrothermal effects on free vibration of delaminated woven fiber composite plates-numerical and experimental results", Compos. Struct., 96, 502-513. https://doi.org/10.1016/j.compstruct.2012.08.057.
- Parhi, P.K., Bhattacharyya, S.A. and Sinha, P.K. (2001), "Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells", J. Sound Vib., 248(2), 195-214. https://doi.org/10.1006/jsvi.2000.3506.
- Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25+34. https://doi.org/10.1016/S0263-8223(01)00182-9.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press
- Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/scs.2019.33.1.081.
- Sai Ram, K.S. and P.K. (1992a), "Hygrothermal effects on the free vibration of laminated composite plates", J. Sound Vib., 158(l), 133-148. https://doi.org/10.1016/0022-460X(92)90669-O.
- Sai Ram, K.S. and Sinha, P.K. (1992a), "Hygrothermal effects on the buckling of laminated composite plates", Compos. Struct., 21, 233-247. https://doi.org/10.1016/0263-8223(92)90051-D.
- Saidi, A.R., Bahaadini, R. and Majidi-Mozafari, K. (2019), "On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading", Compos. Part B: Eng., 164, 778-799. https://doi.org/10.1016/j.compositesb.2019.01.074.
- Shen, H.S. (2001a), "Hygrothermal effects on the postbuckling of shear deformable laminated plates", Int. J. Mech. Sci., 43, 1259-1281. https://doi.org/10.1016/S0020-7403(00)00058-8.
- Shen, H.S. (2001b), "The effects of hygrothermal conditions on the postbuckling of shear deformable laminated cylindrical shells", Int. J. Solid. Struct., 38, 6357-6380. https://doi.org/10.1016/S0020-7683(01)00123-8.
- Shen, H.S. (2002), "Hygrothermal effects on the postbuckling of axially loaded shear deformable laminated cylindrical panels", Compos. Struct., 56, 73-85. https://doi.org/10.1016/S0263-8223(01)00187-8.
- Singh, B.N. and Verma, V.K. (2009), "Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties", J. Reinf. Plast. Compos., 28(4), 409-427. https://doi.org/10.1177/0731684407084991.
- Singh, S.K. and Chakrabarti, A. (2017), "Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory", Steel Compos. Struct., 23(1), 41-51. https://doi.org/10.12989/scs.2017.23.1.041.
- Suganyadevi, S. and Singh, B.N. (2016), "Higher order closedform solution for the analysis of laminated composite andsandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Wang, X., Dong, K. and Wang, X.Y. (2005), "Hygrothermal effect on dynamic interlaminar stresses in laminated plates with piezoelectric actuators", Compos. Struct., 71, 220-228. https://doi.org/10.1016/j.compstruct.2004.10.004.
- Wang, Y.Q. and Zu, J.W. (2018), "Vibration characteristics of moving sigmoid functionally graded plates containing porosities", Int. J. Mech. Mater. Des., 14(4), 473-489. https://doi.org/10.1007/s10999-017-9385-2.
- Whitney, J.M. and Ashton, J.E. (1971), "Effect of environment on the elastic response of layered composite plates", AIAA J., 9, 1708-1713. https://doi.org/10.2514/3.49976.
- Wosu, S.N., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Compos. Part B: Eng., 43(3), 841-855. https://doi.org/10.1016/j.compositesb.2011.11.045.
- Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci., 10(3), 176-189. https://doi.org/10.24107/ijeas.456755.
- Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/jcamech.2019.291967.448.
- Zenkour, A.M. (2012), "Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory", Compos. Struct., 94(12), 3685-3696. https://doi.org/10.1016/j.compstruct.2012.05.033
- Zenkour, A.M. (2020), "Quasi-3D refined theory for functionally graded porous plates: displacements and stresses", Phys. Mesomech., 23(1), 39-53. https://doi.org/10.1016/j.compstruct.2018.05.147.