참고문헌
- Afzali-Naniz O. and Mazloom M. (2019a), "Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asia. J. Civil Eng., 20(1), 57-70. https://doi.org/10.1007/s42107-018-0088-2.
- Afzali-Naniz, O. and Mazloom, M. (2018), "Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete", J. Build. Eng., 20, 400-410. https://doi.org/10.1016/j.jobe.2018.08.014.
- Afzali-Naniz, O. and Mazloom, M. (2019b), "Fracture behavior of self-compacting semi-lightweight concrete containing nanosilica", Adv. Struct. Eng., 22(10), 2264-2277. https://doi.org/10.1177/1369433219837426
- Akcxaouglu, T., Tokyay, M. and Cxelik, T. (2004), "Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression", Cement Concrete Compos., 26(6), 633-638. https://doi.org/10.1016/S0958-9465(03)00092-1.
- Al-Khaiat, H. and Hague M.N. (1998), "Effect of initial curing on early strength and physical properties of lightweight concrete", Cement Concrete Res., 28, 859-866. https://doi.org/10.1016/S0008-8846(98)00051-9.
- Angelin, A., Lintz R., Osorio, W. and Gachet, L. (2020), "Evaluation of efficiency factor of a self-compacting lightweight concrete with rubber and expanded clay contents", Constr. Build. Mater., 257, 119573. https://doi.org/10.1016/j.conbuildmat.2020.119573.
- ASTM C 1611/C 1611M-05 (2005), Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International, West Conshohocken, PA, USA.
- ASTM C 1621/C 1621M (2017), Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring, ASTM International, West Conshohocken, PA, USA.
- ASTM C 293 (2002), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading), ASTM International, West Conshohocken, PA, USA.
- ASTM C1585-04 (2004), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, Astm International, West Conshohocken, PA, USA.
- ASTM C1876-19 (2019), Standard Test Method for Bulk Electrical Resistivity or Bulk Conductivity of Concrete, ASTM International, West Conshohocken, PA, USA.
- ASTM C469/C469M (2010), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
- ASTM C597-09 (2009), Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, USA.
- ASTM C642-97 (2006), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete ASTM International, West Conshohocken, PA, USA.
- Bahadori, H. and Hosseini, P. (2012), "Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties)", J. Civil Eng. Manage., 18(3), 416-425. https://doi.org/10.3846/13923730.2012.698912.
- Beygi, M.H., Kazemi, M.T., Nikbin, I.M. and Amiri, J.V. (2014b), "The effect of aging on the fracture characteristics and ductility of self-compacting concrete", Mater. Des., 55, 937-948. https://doi.org/10.1016/j.matdes.2013.10.066.
- Beygi, M.H.A., Kazemi, M.T., Amiri, J.V., Nikbin, I.M., Rabbanifar, S. and Rahmani, E. (2014a), "Evaluation of the effect of maximum aggregate size on fracture behavior of selfcompacting concrete", Constr. Build. Mater., 55, 202-211. https://doi.org/10.1016/j.conbuildmat.2014.01.065.
- Beygi, M.H.A., Nikbin, I.M. and Amiri, J.V. (2013), "The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete", Mater. Des., 50, 267-276. https://doi.org/10.1016/j.matdes.2013.02.018.
- BS EN 12390-4 (2000), Testing Hardened Concrete, Method of Determination of Compressive Strength of Concrete Cubes, British Standards Institute, London, UK.
- BS EN 12390-5 (2019), Testing Hardened Concrete, Flexural Strength of Test Specimens, British Standards Institute, London, UK.
- BS EN 12390-6 (2000), Testing Hardened Concrete, Tensile Splitting Strength of Test Specimens, British Standards Institute, London, UK.
- Carpinteri, A and Brighenti, R (2010), "Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading", Mater. Des., 31, 2032-2042. https://doi.org/10.1016/j.matdes.2009.10.021.
- Dolatabdi, Y., Abolpour, B. and Tazangi, M. (2021), "Investigating effects of Nano-particles of silica on the properties of self-compacting concrete containing perlite, leca and scoria light weight aggregates", Arab. J. Geosci., 14(10), 1-13. https://doi.org/10.1007/s12517-021-07233-w.
- Doostmohamadi, A., Karamloo, M. and Afzali-Naniz, O. (2020), "Effect of polyolefin macro fibers and handmade GFRP anchorage system on improving the bonding behavior of GFRP bars embedded in self-compacting lightweight concrete", Constr. Build. Mater., 253, 119230. https://doi.org/10.1016/j.conbuildmat.2020.119230.
- Duan, P., Shui, Z., Chen, W. and Chen, C. (2013), "Efficiency of mineral admixtures in concrete: microstructure, compressive strength and stability of hydrate phases", Appl. Clay Sci., 83-84, 115-121. https://doi.org/10.1016/j.clay.2013.08.021.
- Etli, S., Cemalgil, S. and Onat, O. (2021), "Effect of pumice powder and artificial lightweight fine aggregate on selfcompacting mortar", Comput. Concrete, 27(3), 241-252. https://doi.org/10.12989/cac.2021.27.3.241.
- European Federation for Specialist Construction Chemicals and Concrete Systems (EFNARC) (2002), Specification and guidelines for self-compacting concrete, European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, UK.
- Farzadnia, N., Abang Ali, A., Dermirboga, R. and Parvez Anwar, M. (2013), "Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars", Cement Concrete Res., 48, 97-104. https://doi.org/10.1016/j.cemconres.2013.03.005.
- Felekoglu, B.S. and Turkel, B.B. (2007), "Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete", Build. Environ., 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012.
- Ghasemi, M., Ghasemi, M.R. and Mousavi, S.R. (2018), "Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters", Constr. Build. Mater., 162, 674-682. https://doi.org/10.1016/j.conbuildmat.2017.11.141.
- Guneyisi, E., Gesoglu, M., Azez, O.A. and Oznur, H.O. (2016), "Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates", Constr. Build. Mater., 115, 371-380. https://doi.org/10.1016/j.conbuildmat.2016.04.055.
- Hosseini, P., Booshehrian, A. and Farschi, S. (2010), "Influence of nano-SiO2 addition on microstructure and mechanical properties of cement mortars for ferrocement", Transp. Res. Record, 2141, 15-20. https://doi.org/10.3141/2141-04.
- Hosseinpourpia, R., Varshoee, A., Soltani, M., Hosseini, P. and Ziaei Tabari, H. (2012), "Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites", Constr. Build. Mater., 31, 105-111. https://doi.org/10.1016/j.conbuildmat.2011.12.102.
- Karamloo, M. and Mazloom, M. (2018), "An efficient algorithm for scaling problem of notched beam specimens with various notch to depth ratios", Comput. Concrete, 22(1), 39-51. https://doi.org/10.12989/cac.2018.22.1.039.
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016a), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168, 227-241. https://doi.org/10.1016/j.engfracmech.2016.09.011.
- Karamloo, M., Mazloom, M. and Payganeh, G. (2016b), "Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete", Constr. Build. Mater., 123, 508-515. https://doi.org/10.1016/j.conbuildmat.2016.07.061.
- Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: a stress-based approach", Mater. Today Commun., 13, 36-45. https://doi.org/10.1016/j.mtcomm.2017.08.002.
- Klug, Y. and Holschemacher, K. (2003), "Comparison of the hardened properties of self-compacting and normal vibrated concrete", The third International RILEM Symposium on Self-Compacting Concrete, Reykjavik, August.
- Kong, D., Su, Y., Du, X., Yang, Y., Wei, S. and Shah, S.P. (2013), "Influence of nano-silica agglomeration on fresh properties of cement pastes", Constr. Build. Mater., 43, 557-562. https://doi.org/10.1016/j.conbuildmat.2013.02.066.
- Korte, S., Boel, V., De-Corte, W. and De Schutter, G. (2014), "Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests", Constr. Build. Mater., 57, 1-8. https://doi.org/10.1016/j.conbuildmat.2014.01.090.
- Li, H., Xiao, H., Yuan, J. and Ou, J. (2004), "Microstructure of cement mortar with nano-particles", Compos. Part B: Eng., 35,185-189. https://doi.org/10.1016/S1359-8368(03)00052-0.
- Li, J., Zhao, E., Niu, J. and Wan, Ch. (2021), "Study on mixture design method and mechanical properties of steel fiber reinforced self-compacting lightweight aggregate", Constr. Build. Mater., 267, 121019. https://doi.org/10.1016/j.conbuildmat.2020.121019
- Li, L.G., Huang, Z.H., Zhu, J., Kwan, A.K.H. and Chen, H.Y. (2017), "Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar", Constr. Build. Mater., 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115.
- Madandoust, M. and Mousavi, S.Y. (2012), "Fresh and hardened properties of self-compacting concrete containing metakaolin", Constr. Build. Mater., 35, 752-760. https://doi.org/10.1016/j.conbuildmat.2012.04.109.
- Mazloom, M. and Hatami, H. (2015), "The behavior of self-compacting light weight concrete produced by magnetic water", Civil Environ. Eng., 9(12), 1616-162. https://doi.org/10.5281/zenodo.1125669.
- Mazloom, M. and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete, 19(2), 203-210. https://doi.org/10.12989/cac.2017.19.2.203.
- Mazloom, M. and Miri, M.S. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5(2), 87-99. https://doi.org/10.12989/acc.2017.5.2.087.
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.
- Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/acc.2017.5.6.587.
- Mazloom, M., Homayooni, S.M. and Miri, S.M. (2018a), "Effect of rock flour type on rheology and strength of self-compacting lightweight concrete", Comput. Concrete, 21(2), 199-207. https://doi.org/10.12989/cac.2018.21.2.199.
- Mazloom, M., Mehrvand, M., Pourhaji, P. and Savaripour, A. (2019), "Studying the effects of CFRP and GFRP sheets on strengthening of self-compacting RC girders", Struct. Monit. Mainten., 6(1), 47-66. https://doi.org/10.12989/smm.2019.6.1.047.
- Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mater., 72(1), 83-97. https://doi.org/10.12989/sem.2019.72.1.083.
- Mazloom, M., Pourhaji, P., Shahveisi, M. and Jafari, S.H. (2019), "Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves", Struct. Eng. Mech., 72(1), 83-97. https://doi: 10.12989/sem.2019.72.1.083.
- Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete, 15(6), 935-950. https://doi.org/10.12989/cac.2015.15.6.935.
- Mazloom, M., Soltani, A., Karamloo, M., Hasanloo, A. and Ranjbar, A. (2018b), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., 7(1), 407-434. http://doi.org/10.12989/amr.2018.7.1.045.
- Medher, A., Al-Haditi, A. and Hilal, N. (2021), "The possibility of producing Self-Compacting lightweight concrete by using expanded polystryrene beads as coarse aggregate", Arab. J. Sci. Eng., 46, 4523-4270. https://doi.org/10.1007/s13369-020-04886-9.
- Nazari, A. and Riahi, S. (2010), "Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing SiO2 nanoparticles", Mater. Sci. Eng.: A, 527, 7663-7672. https://doi.org/10.1016/j.msea.2010.08.095.
- Nikbin, I.M., Davoodi, M.R., Fallahnejad, H. and Rahimi, S. (2016), "Influence of mineral powder content on the fracture behaviors and ductility of self-compacting concrete", J. Mater. Civil Eng., 28(3), 1-14. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001404.
- Nili, M. and Ehsani, A. (2015), "Investigating the effect of the cement paste and transition zone on strength development of concrete containing nano silica and silica fume", Mater. Des., 75, 174-183. https://doi.org/10.1016/j.matdes.2015.03.024.
- Okamura, H. and Ozawa, K. (1996), "Self-compactable high-performance concrete in Japan", International Workshop on High Performance Concrete, Bangkok, November.
- Petersson, P.E. (1980), "Fracture energy of concrete: practical performance and experimental results", Cement Concrete Res., 10, 91-101. https://doi.org/10.1016/0008-8846(80)90055-1.
- Puentes, J., Barluenga, G. and Palomar, I. (2015), "Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability", Constr. Build. Mater., 81, 154-161. https://doi.org/10.1016/j.conbuildmat.2015.02.053.
- Sadeghi Nik, A. and Lotfi Omran, O. (2013), "Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity", Constr. Build. Mater., 44, 654-662. https://doi.org/10.1016/j.conbuildmat.2013.03.082.
- Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.
- Salehi, H. and Mazloom, M. (2018a), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concrete Res., 71(13), 1-45. https://doi.org/10.1680/jmacr.17.00418.
- Salehi, H. and Mazloom, M. (2018b), "Experimental and numerical studies of crack propagation in self-compacting lightweight concrete", Modares Mech. Eng., 18(6), 144-155.
- Salehi, H. and Mazloom, M. (2019a), "Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater. 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
- Salehi, H. and Mazloom, M. (2019b), "An experimental investigation on fracture parameters and brittleness of self-compacting lightweight concrete containing magnetic field treated water", Arch. Civil Mech. Eng., 19, 803-819. https://doi.org/10.1016/j.acme.2018.10.008.
- Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c.
- Shah, S.P. (1990), "Size-effect method for determining fracture energy and process zone size of concrete", Mater. Struct., 23(6), 461-465. https://doi.org/10.1007/BF02472030
- Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-a review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.
- Sun, B., Xiao, R., Ruan, W. and Wang, P. (2020), "Corrosion-induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models", Eng. Struct., 208, 110313. https://doi.org/10.1016/j.engstruct.2020.110313.
- Wu, Z., Zhang, Y., Zheng, J. and Ding, Y. (2009), "An experimental study on the workability of self-compacting lightweight concrete", Constr. Build. Mater., 23(5), 2087-2092. https://doi.org/10.1016/j.conbuildmat.2008.08.023.
- Xu, J., Wang, B. and Zuo, J. (2017), "Modification effects of nanosilica on the interfacial transition zone in concrete: A multiscale approach", Cement Concrete Compos., 81, 1-10. https://doi.org/10.1016/j.cemconcomp.2017.04.003.
- Zhang, M. and Islam, J. (2012a), "Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag", Constr. Build. Mater., 29, 573-580. https://doi.org/10.1016/j.conbuildmat.2011.11.013.
- Zhang, M.H., Islam, J. and Peethamparan, S. (2012b), "Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag", Cement Concrete Compos., 34(5), 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005.