참고문헌
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024.
- Alnujaie, A., Akbas, S.D., Eltaher, M. and Assie, A.E. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- Asiri, S.A., Akba, E.D. and Eltaher, M. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Atacan, A.T. and Yukseler, R.F. (2021), "Snap-through instability of slightly curved beams under sinusoidal loading based on nonlocal elasticity theory", Mech. Bas. Des. Struct., 1-21. https://doi.org/10.1080/15397734.2021.1901736.
- Atacan, A.T. and Yukseler, R.F. (2019), "Snap-through buckling of hinged-hinged initially imperfect beams undergoing finite deflections subjected to lateral concentrated midpoint loads", Mech. Solid., 54(7), 1119-1130. https://doi.org/10.3103/S0025654419070136.
- Babaei, H. and Eslami, M.R. (2020), "On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique", Compos. Struct., 247, 112447. https://doi.org/10.1016/j.compstruct.2020.112447.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2018), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
- Barretta, R., Faghidian, S.A., de Sciarra, F.M., Penna, R. and Pinnola, F.P. (2020), "On torsion of nonlocal Lam strain gradient FG elastic beams", Compos. Struct., 233, 111550. https://doi.org/10.1016/j.compstruct.2019.111550.
- Civalek, O. and Jalaei, M.H. (2020), "Shear buckling analysis of functionally graded (FG) carbon nanotubes", Aerosp. Sci. Technol., 99, 105753. https://doi.org/10.1016/j.ast.2020.105753.
- Dang, V.H., Sedighi, H.M., Chan, D.Q., Civalek, O. and Abouelregal, A.E. (2021), "Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory", Struct. Eng. Mech., 78(1), 103-116. https://doi.org/10.12989/sem.2021.78.1.103.
- Dehrouyeh-Semnani, A.M., Dehdashti, E., Yazdi, M. and Nikkhah-Bahrami, M. (2019), "Nonlinear thermo-resonant behavior of fluid-conveying FG pipes", Int. J. Eng. Sci., 144, 103141. http://doi.org/10.1016/j.ijengsci.2019.103141.
- Dehrouyeh-Semnani, A.M., Nikkhah-Bahrami, M. and Yazdi, M. (2017a), "On nonlinear stability of fluid-conveying imperfect micropipes", Int. J. Eng. Sci., 120, 254-271. http://doi.org/10.1016/j.ijengsci.2017.08.004.
- Dehrouyeh-Semnani, A.M., Nikkhah-Bahrami, M. and Yazdi, M. (2017b), "On nonlinear vibrations of micropipes conveying fluid", Int. J. Eng. Sci., 117, 20-33. http://doi.org/10.1016/j.ijengsci.2017.02.006.
- Eltaher, M. and Akbas, E.D. (2020), "Transient response of 2d functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357
- Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus, 136(4), 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 93-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Huang, X.H, Yang, J., Wang, X. and Azim, I. (2020), "Combined analytical and numerical approach for auxetic FG-CNTRC plate subjected to a sudden load", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01106-8.
- Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272(15), 114231. https://doi.org/10.1016/j.compstruct.2021.114231.
- Lu, L., Zhu, L., Guo, X., Zhao, J. and Liu, G. (2019), "A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells", Appl. Math. Mech., 40(12), 1695-1722. https://doi.org/10.1007/s10483-019-2549-7.
- Mahmoudpour, E., Hosseini-Hashemi, S.H. and Faghidian, S.A. (2019), "Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory. Microsystem Technologies", Microsyst. Technol., 25(3), 951-964. https://doi.org/10.1007/s00542-018-4198-2.
- Malikan, M. and Eremeyev, V.A. (2021a), "Effect of surface on the flexomagnetic response of ferroic composite nanostructures; nonlinear bending analysis", Compos. Struct., 271, 114179. https://doi.org/10.1016/j.compstruct.2021.114179.
- Malikan, M., Wiczenbach, T. and Eremeyev, V. A. (2021b), "Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect", Continuum. Mech. Therm., 1-16. https://doi.org/10.1007/s00161-021-01038-8.
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- She, G.L., Ren, Y.R. and Yan, K.M. (2019a), "On snap-buckling of porous FG curved nanobeams", Acta Astronaut., 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
- She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019b), "On nonlinear bending behavior of fg porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.
- Shen, H.S. (2013), A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc., Singapore.
- Shen, H.S., Huang, X.H. and Yang, J. (2020), "Nonlinear bending of temperature-dependent FG- CNTRC laminated plates with negative Poisson's ratio", Mech. Adv. Mater. Struct., 27(13), 1-13. https://doi.org/10.1080/15376494.2020.1716412.
- Xi, Y.Y., Lyu, Q., Zhang, N.H. and Wu, J.Z. (2020), "Thermal-induced snap-through buckling of simply-supported functionally graded beams", Appl. Math. Mech.-Engl., 41(12), 1821-1832. https://doi.org/10.1007/s10483-020-2691-7.
- Yang, J., Huang, X.H. and Shen, H.S. (2020a), "Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson's ratio", Thin Wall. Struct., 148, 106514. https://doi.org/10.1016/j.tws.2019.106514.
- Yang, J., Huang, X.H. and Shen, H.S. (2020b), "Nonlinear vibration of Temperature-Dependent FG-CNTRC laminated beams with negative Poisson's ratio", Int. J. Struct. Stab. Dyn., 20(4), 2050043. https://doi.org/10.1142/S0219455420500431.
- Zhang, P. and Fu, Y. (2013), "A higher-order beam model for tubes", Eur. J. Mech. A-Solid., 38(3), 12-19. https://doi.org/10.1016/j.euromechsol.2012.09.009.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhong, J. and Ross, S.D. (2020), "Differential correction and arc-length continuation applied to boundary value problems: Examples based on snap-through of circular arches", Appl. Math. Model., 97, 81-95. https://doi.org/10.1016/j.apm.2021.03.027.
- Zhong, J., Fu, Y., Wan, D. and Li, Y. (2016), "Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model", Appl. Math. Model., 40(17-18), 7601-7614. https://doi.org/10.1016/j.apm.2016.03.03.
- Zhong, J., Virgin, L.N. and Ross, S.D. (2018), "A tube dynamics perspective governing stability transitions: an example based on snap-through buckling", Int. J. Mech. Sci., 149, 413-428. https://doi.org/10.1016/j.ijmecsci.2017.10.040.