DOI QR코드

DOI QR Code

Influence of sisal fibres and rubber latex on the engineering properties of sand concrete

  • Jaradat, Oday Z. (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra) ;
  • Gadri, Karima (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra) ;
  • Tayeh, Bassam A. (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Guettalaa, Abdelhamid (Laboratory of Research in Civil Engineering, Mohamed Khider University of Biskra)
  • 투고 : 2021.04.22
  • 심사 : 2021.07.26
  • 발행 : 2021.10.10

초록

This experimental study aims to investigate the properties of sand concrete (SC) by using sisal fibres and latex in various fields in construction. Sisal fibres were applied at four ratios of 0.05%, 0.10%, 0.15% and 0.20%, while liquid latex was replaced with three ratios of 15%, 25% and 35%. In this context, ideal percentages of sisal fibre (0.1% F) and latex (35% L) were combined in a single cement matrix. For each percentage, tests on flow, density, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, water accessible porosity, water absorption and shrinkage were performed on fresh and hardened SC. Scanning electron microscopy (SEM) was also conducted for microstructure analysis. Results indicate that adding latex emulsion to SC containing sisal fibres increased the adhesion of the fibres to the cement matrix, which contributed to the increase in flexural strength and the decrease in shrinkage. This condition also helped reduce the porosity and water absorption of latex-modified SC with sisal fibres compared with SC that contained fibres. The improvement occurred in the properties that constitute an obstacle to the widespread use of SC. Thus this improvement has practical implications.

키워드

과제정보

Authors wish to thank the Directorate General for Scientific Research and Technological Development-DGRSDT, Algeria, for financial support.

참고문헌

  1. Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167.
  2. Aiqin, W., Chengzhi, Z. and Ningsheng, Z. (1999), "The theoretic analysis of the influence of the particle size distribution of cement system on the property of cement", Cement Concrete Res., 29(11), 1721-1726. https://doi.org/10.1016/S0008-8846(99)00148-9.
  3. Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B.A. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol, 9, 1966-1977. https://doi.org/10.1016/j.jmrt.2019.12.029.
  4. Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
  5. Ammari, M.S., Belhadj, B., Bederina, M., Ferhat, A. and Queneudec, M. (2020), "Contribution of hybrid fibers on the improvement of sand concrete properties: Barley straws treated with hot water and steel fibers", Constr. Build. Mater., 233, 117374. https://doi.org/10.1016/j.conbuildmat.2019.117374.
  6. Baharuddin, N.K., Nazri, F.M., Bakar, B.H.A., Beddu, S. and Tayeh, B.A. (2020), "Potential use of ultra high-performance fibre-reinforced concrete as a repair material for fire-damaged concrete in terms of bond strength", Int. J. Integ. Eng., 12(9), 87-95.
  7. Barluenga, G. and Hernandez-Olivares, F. (2004), "SBR latex modified mortar rheology and mechanical behaviour", Cement Concrete Res., 34(3), 527-535. https://doi.org/10.1016/j.cemconres.2003.09.006.
  8. Baron, J., Olivier, J.P. and Weiss, J.C. (1997), "Les ciments courants", Les Betons, Bases et Donnees Pour Leur Formulation, Edition Eyrolles, 806.
  9. Bederina, M., Belhadj, B., Ammari, M.S., Gouilleux, A., Makhloufi, Z., Montrelay, N. and Queneudec, M. (2016), "Improvement of the properties of a sand concrete containing barley straws-Treatment of the barley straws", Constr. Build. Mater., 115, 464-477. https://doi.org/10.1016/j.conbuildmat.2016.04.065.
  10. Bederina, M., Bouziani, T., Khenfer, M. and Queneudec, M. (2012), "Absorption de l'eau et son effet sur la durabilite des betons de sable alleges par ajout de copeaux de bois", MATEC Web Conf., 2, 0-6. https://doi.org/10.1051/matecconf/20120201006.
  11. Bederina, M., Gotteicha, M., Belhadj, B., Dheily, R.M., Khenfer, M.M. and Queneudec, M. (2012), "Drying shrinkage studies of wood sand concrete-Effect of different wood treatments", Constr. Build. Mater., 36, 1066-1075. https://doi.org/10.1016/j.conbuildmat.2012.06.010.
  12. Bederina, M., Khenfer, M.M., Dheilly, R.M. and Queneudec, M. (2005), "Reuse of local sand: Effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes", Cement Concrete Res., 35(6), 1172-1179. https://doi.org/10.1016/j.cemconres.2004.07.006.
  13. Belhadj, B., Bederina, M., Makhloufi, Z., Dheilly, R.M., Montrelay, N. and Queneudec, M. (2016), "Contribution to the development of a sand concrete lightened by the addition of barley straws", Constr. Build. Mater., 113, 513-522. https://doi.org/10.1016/j.conbuildmat.2016.03.067.
  14. Belhadj, B., Bederina, M., Benguettache, K. and Queneudec, M. (2014), "Effect of the type of sand on the fracture and mechanical properties of sand concrete", Adv. Concrete Constr., 2(1), 13-27. https://doi.org/10.12989/acc2014.2.1.013.
  15. Benaissa, A., Kamen, A., Chouicha, K. and Malab, S. (2008), "Panneau 3D au beton de sable", Mater. Struct./Materiaux et Constr., 41(8), 1377-1391. https://doi.org/10.1617/s11527-007-9336-8.
  16. Bledzki, A.K. and Gassan, J. (1999), "Composites reinforced with cellulose based fibres", Prog. Polym. Sci., 24(2), 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5.
  17. Bouziani, T., Benmounah, A., Makhloufi, Z., Bederina, M. and Queneudec Tkint, M. (2014), "Properties of flowable sand concretes reinforced by polypropylene fibers", J. Adhes. Sci. Technol., 28(18), 1823-1834. https://doi.org/10.1080/01694243.2014.924176.
  18. Brandt, A.M. (2008), "Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering", Compos. Struct., 86(1-3), 3-9. https://doi.org/10.1016/j.compstruct.2008.03.006.
  19. Campos, A., Marconcini, J.M., Imam, S.H., Klamczynski, A., Ortis, W.J., Wood, D.H., Williams, T.G., Martins-Franchetti, S.M. and Mattoso, L.H.C. (2012), "Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers", J. Reinf. Plast. Compos., 31(8), 573-581. https://doi.org/10.1177/0731684412441092.
  20. Chahour, K., Aboutaleb, D., Safi, B., Mazari, T. and Zeghad, M. (2017), "Granulated foam glass based on mineral wastes used for building materials", Build. Acoust., 24(4), 281-294. https://doi.org/10.1177/1351010X17739434.
  21. Chakraborty, S., Kundu, S.P., Roy, A., Basak, R.K., Adhikari, B. and Majumder, S.B. (2013), "Improvement of the mechanical properties of jute fibre reinforced cement mortar: A statistical approach", Constr. Build. Mater., 38, 776-784. https://doi.org/10.1016/j.conbuildmat.2012.09.067.
  22. Chauvin, J.J. and Grimaldi, G. (1988), "Les betons de sable", Bulletin de Liaison Des Laboratoires Des Ponts et Chaussees, 157, 9-15.
  23. Cheboub, T., Senhadji, Y., Khelafi, H. and Escadeillas, G. (2020), "Investigation of the engineering properties of environmentallyfriendly self-compacting lightweight mortar containing olive kernel shells as aggregate", J. Clean. Prod., 249. https://doi.org/10.1016/j.jclepro.2019.119406.
  24. de Azevedo, A.R.G., Marvila, M.T., Tayeh, B.A., Cecchin, D., Pereira, A.C. and Monteiro, S.N. (2021), "Technological performance of acai natural fibre reinforced cement-based mortars", J. Build. Eng., 33, 101675. https://doi.org/10.1016/j.jobe.2020.101675.
  25. Decter, M.H. (1997), "Durable concrete repair-Importance of compatibility and low shrinkage", Constr. Build. Mater., 11(5-6), 267-273. https://doi.org/10.1016/S0950-0618(97)00047-0.
  26. del Rio Merino, M. and Olivares, F. H. (2000), "Reinforced plaster by means of the synergic action between concrete additives (superfluidifiers, fluidifiers and airing-plasticizers) and E glass fibres", Materiales de Construccion, 50(260), 27-38. https://doi.org/10.3989/mc.2000.v50.i260.388.
  27. Diab, A.M., Elyamany, H.E. and Ali, A.H. (2013), "Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties", Alex. Eng. J., 52(1), 83-98. https://doi.org/10.1016/j.aej.2012.11.002.
  28. Djebien, R., Belachia, M. and Hebhoub, H. (2015), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 53(6), 1241-1251. https://doi.org/10.12989/sem.2019.69.6.627.
  29. Gadri, K. and Guettala, A. (2017a), "Evaluation of bond strength between sand concrete as new repair material and ordinary concrete substrate (The surface roughness effect)", Constr. Build. Mater., 157, 1133-1144. https://doi.org/10.1016/j.conbuildmat.2017.09.183.
  30. Gadri, K. and Guettala, A. (2017b), "Study of the adaptation of the sand concrete as repair material associated with an ordinary", J. Appl. Eng. Sci. Technol., 3, 13-20.
  31. Gencel, O., Brostow, W., Datashvili, T. and Thedford, M. (2011), "Workability and mechanical performance of steel fiber-reinforced self-compacting Concrete with Fly Ash", Compos. Interf., 18(2), 169-184. https://doi.org/10.1163/092764411X567567.
  32. Gram, H.E. (1983), "Durability of natural fibres in concrete. Swedish Cement Concrete Research Institute", CBI Research Fo, 1(83), 255.
  33. Grinys, A., Augonis, A., Dauksys, M. and Pupeikis, D. (2020), "Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete", Constr. Build. Mater., 248, 118584. https://doi.org/10.1016/j.conbuildmat.2020.118584.
  34. Hadjoudja, M., Khenfer, M.M., Mesbah, H.A. and Yahia, A. (2014), "Statistical models to optimize fiber-reinforced dune sand concrete", Arab. J. Sci. Eng., 39(4), 2721-2731. https://doi.org/10.1007/s13369-013-0774-z.
  35. Haido, J.H., Abdul-Razzak, A.A., Al-Tayeb, M.M., Bakar, B.H., Yousif, S.T. and Tayeh, B.A. (2021), "Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios", Adv. Concrete Constr., 11(2), 89-98. https://doi.org/10.12989/acc.2021.11.2.089.
  36. Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2021), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725.
  37. Jo, B.W., Chakraborty, S. and Yoon, K.W. (2014), "A hypothetical model based on effectiveness of combined alkali and polymer latex modified jute fibre in controlling the setting and hydration behaviour of cement", Constr. Build. Mater., 68, 1-9. https://doi.org/10.1016/j.conbuildmat.2014.06.043.
  38. Jose, J. and Hossiney, N. (2016), "Characteristics of concrete containing waste foundry sand and slag sand", Int. J. Earth Sci. Eng., 9(03), 54-59.
  39. Joseph, K., Toledo Filho, R.D., James, B., Thomas, S. and Carvalho, L.H. de. (1999), "A review on sisal fiber reinforced polymer composites", Revista Brasileira de Engenharia Agricola e Ambiental, 3(3), 367-379. https://doi.org/10.1590/1807-1929/agriambi.v3n3p367-379.
  40. Kim, J.H., Robertson, R.E. and Naaman, A.E. (1999), "Structure and properties of poly(vinyl alcohol)-modified mortar and concrete", Cement Concrete Res., 29(3), 407-415. https://doi.org/10.1016/S0008-8846(98)00246-4.
  41. Kriker, A., Debicki, G., Bali, A., Khenfer, M.M. and Chabannet, M. (2005), "Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate", Cement Concrete Compos., 27(5), 554-564. https://doi.org/10.1016/j.cemconcomp.2004.09.015.
  42. Kundu, S.P., Chakraborty, S. and Chakraborty, S. (2018), "Effectiveness of the surface modified jute fibre as fibre reinforcement in controlling the physical and mechanical properties of concrete paver blocks", Constr. Build. Mater., 191, 554-563. https://doi.org/10.1016/j.conbuildmat.2018.10.045.
  43. Kwan, W.H., Ramli, M. and Cheah, C.B. (2015), "Accelerated curing regimes for polymer-modified cement", Mag. Concrete Res., 67(23), 1233-1241. https://doi.org/10.1680/macr.14.00097.
  44. Latroch, N., Benosman, A.S., Bouhamou, N.E., Senhadji, Y. and Mouli, M. (2018), "Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride", Constr. Build. Mater., 175, 77-87. https://doi.org/10.1016/j.conbuildmat.2018.04.173.
  45. Lewis, W.J. and Lewis, G. (1990), "The influence of polymer latex modifiers on the properties of concrete", Compos., 21(6), 487-494. https://doi.org/10.1016/0010-4361(90)90421-R.
  46. Li, X., Tabil, L.G. and Panigrahi, S. (2007), "Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review", J. Polym. Environ., 15(1), 25-33. https://doi.org/10.1007/s10924-006-0042-3.
  47. Li, Y., Mai, Y. and Ye, L. (2000), "Sisal fibre and its composites : a review of recent developments IM PA US AS DO ME US EX ON AS", Compos. Sci. Technol., 60, 2037-2055. https://doi.org/10.1016/S0266-3538(00)00101-9.
  48. Li, Z., Wang, X. and Wang, L. (2006), "Properties of hemp fibre reinforced concrete composites", Compos. Part A: Appl. Sci. Manuf., 37(3), 497-505. https://doi.org/10.1016/j.compositesa.2005.01.032.
  49. Liu, Y., Wang, Z., Fan, Z. and Gu, J. (2020), "Study on properties of sisal fiber modified foamed concrete", IOP Conf. Ser.: Mater. Sci. Eng., 744(1), 012042. https://doi.org/10.1088/1757-899X/744/1/012042.
  50. Merzoud, M., Dheilly, R.M., Goullieux, A., Queneudec, M. and Habita, M.F. (2008), "Optimisation of lignocellulosic composite formulated with a local resource: The diss (Ampelodesma mauritanica)", Proceeding of the 7th International Congress, 8-10.
  51. Naaman, A.E. (1985), "Fiber reinforcement for concrete", Concrete Int., 7(3), 21-25.
  52. Navya, G. and Rao, J.V. (2014), "Experimental investigation on properties concrete paver block with the inclusion of natural fibers", Ratio, 1(1), 0-08.
  53. Neville, A.M. and Brooks, J.J. (1987), Concrete Technology, Longman Scientific & Technical England.
  54. Nilsson, L. (1975), "Reinforcement of concrete with sisal and other vegetable fibres", NASA STI/Recon Technical Report N, 76, 30405.
  55. Norme Europeenne, N.F. (1996), EN ISO 5079, Fibres Textiles-Determination de La Force de Rupture et de l'allongement de Rupture Des Fibres Individuelles. AFNOR, France.
  56. Shaker, F.A., El-Dieb, A.S. and Reda, M.M. (1997), "Durability of styrene-butadiene latex modified concrete", Cement Concrete Res., 27(5), 711-720. https://doi.org/10.1016/S0008-8846(97)00055-0.
  57. Ohama, Y. (1987), "Principle of latex modification and some typical properties of latex-modified mortars and concretes adhesion; binders (materials); bond (paste to aggregate); carbonation; chlorides; curing; diffusion", Mater. J., 84(6), 511-518.
  58. Ohama, Y. (1995), Handbook of Polymer-Modified Concrete and Mortars: Properties and Process Technology, William Andrew.
  59. Ohama, Y. (1997), "Recent progress in concrete-polymer composites", Adv. Cement Bas. Mater., 5(2), 31-40. https://doi.org/10.1016/S1065-7355(96)00005-3.
  60. Ohama, Y. (1998), "Polymer-based admixtures", Cement Concrete Compos., 20(2-3), 189-212. https://doi.org/10.1016/s0958-9465(97)00065-6.
  61. Rebeiz, K.S. (1995), "Time-temperature properties of polymer concrete using recycled PET", Cement Concrete Compos., 17(2), 119-124. https://doi.org/10.1016/0958-9465(94)00004-I.
  62. Rebeiz, K.S. (1996), "Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste", Constr. Build. Mater., 10(3), 215-220. https://doi.org/10.1016/0950-0618(95)00088-7.
  63. Sablocrete. (1994), Betons de Sable, Caracteristiques et Pratiques D'Utilisation [Sand Concrete, Characteristics and Use Practices], Presses de l'Ecole Nationale des Ponts et Chaussees LCPC Paris.
  64. Siddiqi, Z.A., Hameed, R., Saleem, M., Khan,Q.S. and Qazi, J.A. (2013), "Evaluation of compressive strength and water absorption of Styrene Butadiene Rubber (SBR) latex modified concrete", Paki. J. Sci., 65(1), 124-128.
  65. Silva, F.A., Melo Filho, J.A., Toledo Filho, R.D. and Fairbairn, E.M.R. (2007), "Effect of reinforcement ratio on the mechanical response of compression molded sisal fiber textile reinforced concrete", High Performance Fiber Reinforced Cement Composites (HPFRCC5), 175-182.
  66. Siva Bala, P. and Vaisakh, G. (2018), "Mechanical properties of self compacting concrete containing crushed sand and sisal fiber", Int. J. Appl. Environ. Sci., 13(1), 71-81.
  67. Son, S.W. and Yeon, J.H. (2012), "Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive", Constr. Build. Mater., 37, 669-679. https://doi.org/10.1016/j.conbuildmat.2012.07.093.
  68. Soto Izquierdo, I., Soto Izquierdo, O., Ramalho, M.A. and Taliercio, A. (2017), "Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling", Constr. Build. Mater., 151, 98-112. https://doi.org/10.1016/j.conbuildmat.2017.06.072.
  69. Swift, D.G. and Smith, R.B.L. (1978), Sisal Fibre Reinforcement of Cement Paste And Concrete.
  70. Tanabe, T., Sakata, K., Mihashi, H., Sato, R., Maekawa, K. and Nakamura, H. (2008), "Creep, shrinkage and durability mechanics of concrete and concrete structures", Two Volume Set: Proceedings of the CONCREEP 8 Conference, Ise-Shima, Japan, September-October.
  71. Taoukil, D., Ajzoul, T. and Ezbakhe, H. (2012), "Effect of the incorporation of wood wool on thermo physical proprieties of sand mortars", KSCE J. Civil Eng., 16(6), 1003-1010. https://doi.org/10.1007/s12205-012-1470-3.
  72. Tayeh, B.A., Aadi, A.S., Hilal, N.N., Bakar, B.H.A., Al-Tayeb, M.M. and Mansour, W.N. (2019), "Properties of ultra-high-performance fiber-reinforced concrete (UHPFRC)-A review paper", AIP Conf. Proc., 2157(1), 20040. https://doi.org/10.1063/1.5126575.
  73. Tonoli, G.H.D., Rodrigues Filho, U.P., Savastano Jr, H., Bras, J., Belgacem, M.N. and Lahr, F.A.R. (2009), "Cellulose modified fibres in cement based composites", Compos. Part A: Appl. Sci. Manuf., 40(12), 2046-2053. https://doi.org/10.1016/j.compositesa.2009.09.016.
  74. Ukrainczyk, N. and Rogina, A. (2013), "Styrene-butadiene latex modified calcium aluminate cement mortar", Cement Concrete Compos., 41, 16-23. https://doi.org/10.1016/j.cemconcomp.2013.04.012.
  75. Wang, R., Wang, P.M. and Li, X.G. (2005), "Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars", Cement Concrete Res., 35(5), 900-906. https://doi.org/10.1016/j.cemconres.2004.07.012.
  76. Yang, Z., Shi, X., Creighton, A.T. and Peterson, M.M. (2009), "Effect of styrene-butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar", Constr. Build. Mater., 23(6), 2283-2290. https://doi.org/10.1016/j.conbuildmat.2008.11.011.
  77. Yildizel, S.A., Tayeh, B.A. and Calis, G. (2020), "Experimental and modelling study of mixture design optimisation of glass fibre-reinforced concrete with combined utilisation of Taguchi and Extreme Vertices Design Techniques", J. Mater. Res. Technol., 9(2), 2093-2106. https://doi.org/10.1016/j.jmrt.2020.02.083.
  78. Zhang, J., Li, D. and Wang, Y. (2020), "Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models", J. Clean. Prod., 258, 120665. https://doi.org/10.1016/j.jclepro.2020.120665.
  79. Zhang, X., Deng, D., Lin, X., Yang, J. and Fu, L. (2019), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 69(6), 627-635. https://doi.org/10.12989/sem.2019.69.6.627.
  80. Zhou, L.M., Mai, Y.W., Ye, L. and Kim, J.K. (1995), "Techniques for evaluating interfacial properties of fibre-matrix composites", Key Eng. Mater., 104, 549-600. https://doi.org/10.4028/www.scientific.net/KEM.104-107.549.