DOI QR코드

DOI QR Code

Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion

  • Wang, Jing (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Jiao, HongBo (LanLing Center for Disease Control and Prevention) ;
  • Zhang, XinFeng (Taian Center for Disease Control and Prevention) ;
  • Zhang, YuanQing (Jinan KeJia Medical Laboratory, Inc.) ;
  • Sun, Na (Shandong Center for Disease Control and Prevention) ;
  • Yang, Ying (Shandong Center for Disease Control and Prevention) ;
  • Wei, Yi (TEDA Institute of Biological Sciences and Biotechnology, Nankai University) ;
  • Hu, Bin (Shandong Center for Disease Control and Prevention) ;
  • Guo, Xi (TEDA Institute of Biological Sciences and Biotechnology, Nankai University)
  • Received : 2021.05.13
  • Accepted : 2021.07.14
  • Published : 2021.09.28

Abstract

Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are non-typeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAg-knockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.

Keywords

Acknowledgement

This work was supported by the Shandong Medical and Health Science and Technology Development Programs [Grant No. 2017WS455], the Shandong Preventive Medicine Association Zhifei Disease Prevention and Control Technology Research Fund Project [Grant No. LYH2017-03], and a grant from the Tianjin Municipal Natural Science Foundation [Grant No. 17JCYBJC24300].

References

  1. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. https://doi.org/10.1038/nrmicro818
  2. Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P. 2016. Advances in molecular serotyping and subtyping of Escherichia coli. Front. Microbiol. 7: 644. https://doi.org/10.3389/fmicb.2016.00644
  3. Smith JL, Fratamico PM, Gunther N. 2007. Extraintestinal pathogenic Escherichia coli (ExPEC). Foodborne Pathog. Dis. 4: 134-163. https://doi.org/10.1089/fpd.2007.0087
  4. Hu J, Torres AG. 2015. Enteropathogenic Escherichia coli: foe or innocent bystander? Clin. Microbiol. Infect. 21: 729-34. https://doi.org/10.1016/j.cmi.2015.01.015
  5. Merino S, Gonzalez V, Tomas JM. 2016. The first sugar of the repeat units is essential for the Wzy polymerase activity and elongation of the O-antigen lipopolysaccharide. Future Microbiol. 11: 903-918. https://doi.org/10.2217/fmb-2015-0028
  6. Liu B, Furevi A, Perepelov AV, Guo X, Cao H, Wang Q, et al. 2020. Structure and genetics of Escherichia coli O antigens. FEMS Microbiol. Rev. 44: 655-683. https://doi.org/10.1093/femsre/fuz028
  7. Ooka T, Seto K, Ogura Y, et al. 2019. O-antigen biosynthesis gene clusters of Escherichia albertii: their diversity and similarity to Escherichia coli gene clusters and the development of an O-genotyping method. Microb. Genom. 5: e000314.
  8. Amor PA, Whitfield C. 1997. Molecular and functional analysis of genes required for expression of group IB K antigens in Escherichia coli: characterization of the his-region containing gene clusters for multiple cell-surface polysaccharides. Mol. Microbiol. 26: 145-161. https://doi.org/10.1046/j.1365-2958.1997.5631930.x
  9. Sugiyama T, Kido N, Kato Y, Koide N, Yoshida T, Yokochi T. 1998. Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J. Bacteriol. 180: 2775-2778. https://doi.org/10.1128/jb.180.10.2775-2778.1998
  10. Hou X, Perepelov AV, Guo X, Senchenkova SN, Shashkov AS, Liu B, et al. 2017. A gene cluster at an unusual chromosomal location responsible for the novel O-antigen synthesis in Escherichia coli O62 by the ABC transporter-dependent pathway. Glycobiology 27: 669-676. https://doi.org/10.1093/glycob/cwx030
  11. Eichler J, Imperiali B. 2018. Stereochemical divergence of polyprenolphosphate glycosyltransferases. Trends Biochem. Sci. 43: 10-17. https://doi.org/10.1016/j.tibs.2017.10.008
  12. Islam ST, Lam JS. 2014. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can. J. Microbiol. 60: 697-716. https://doi.org/10.1139/cjm-2014-0595
  13. Greenfield LK, Whitfield C. 2012. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr. Res. 356: 12-24. https://doi.org/10.1016/j.carres.2012.02.027
  14. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26: 822-880. https://doi.org/10.1128/CMR.00022-13
  15. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 1664-1668. https://doi.org/10.1073/pnas.92.5.1664
  16. Cleary J, Lai LC, Shaw RK, Straatman-Iwanowska A, Donnenberg MS, Frankel G, et al. 2004. Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology (Reading) 150: 527-538. https://doi.org/10.1099/mic.0.26740-0
  17. Martins FH, Kumar A, Abe CM, Carvalho E, Nishiyama-Jr M, Xing C, et al. 2020. EspFu-mediated actin assembly enhances enteropathogenic Escherichia coli adherence and activates host cell inflammatory signaling pathways. mBio 11: e00617-20.
  18. March C, Cano V, Moranta D, Llobet E, Perez-Gutierrez C, Tomas JM, et al. 2013. Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes. PLoS One 8: e56847. https://doi.org/10.1371/journal.pone.0056847
  19. Plainvert C, Bidet P, Peigne C, Barbe V, Medigue C, Denamur E, et al. 2007. A new O-antigen gene cluster has a key role in the virulence of the Escherichia coli meningitis clone O45:K1:H7. J. Bacteriol. 189: 8528-8536. https://doi.org/10.1128/JB.01013-07
  20. Sarkar S, Ulett GC, Totsika M, Phan MD, Schembri MA. 2014. Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli. PLoS One 9: e94786. https://doi.org/10.1371/journal.pone.0094786
  21. Bao Y, Zhang H, Huang X, Ma J, Logue CM, Nolan LK, et al. 2018. O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Virulence 9: 666-680. https://doi.org/10.1080/21505594.2018.1433979
  22. Vila J, Saez-Lopez E, Johnson JR, et al. 2016. Escherichia coli: an old friend with new tidings. FEMS Microbiol. Rev. 40: 437-463. https://doi.org/10.1093/femsre/fuw005
  23. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, et al. 2000. Artemis: sequence visualization and annotation. Bioinformatics 16: 944-945. https://doi.org/10.1093/bioinformatics/16.10.944
  24. Henikoff S, Henikoff JG, Alford WJ, Pietrokovski S. 1995. Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene 163: GC17-26. https://doi.org/10.1016/0378-1119(95)00486-P
  25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  26. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  27. Davis MR Jr, Goldberg JB. 2012. Purification and visualization of lipopolysaccharide from Gram-negative bacteria by hot aqueous-phenol extraction. J. Vis. Exp. 63: 3916.
  28. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M, et al. 2015. Escherichia coli O-Genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 53: 2427-2432. https://doi.org/10.1128/JCM.00321-15
  29. Maguire M, Kase JA, Roberson D, Muruvanda T, Brown EW, Allard M, et al. 2021. Precision long-read metagenomics sequencing for food safety by detection and assembly of Shiga toxin-producing Escherichia coli in irrigation water. PLoS One 16: e0245172. https://doi.org/10.1371/journal.pone.0245172
  30. Muniesa M, Hammerl JA, Hertwig S, Appel B, Brussow H. 2012. Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl. Environ. Microbiol. 78: 4065-4073. https://doi.org/10.1128/AEM.00217-12
  31. Chen M, Shpirt AM, Guo X, Shashkov AS, Zhuang Y, Wang L, et al. 2015. Identification serologically, chemically and genetically of two Escherichia coli strains as candidates for new O serogroups. Microbiology 161: 1790-1796. https://doi.org/10.1099/mic.0.000136
  32. Iguchi A, von Mentzer A, Kikuchi T, Thomson NR. 2017. An untypeable enterotoxigenic Escherichia coli represents one of the dominant types causing human disease. Microb. Genom. 3: e000121. https://doi.org/10.1099/mgen.0.000121
  33. Lang C, Hiller M, Konrad R, Fruth A, Flieger A. 2019. Whole-genome-based public health surveillance of less common shiga toxin-producing Escherichia coli serovars and untypeable strains identifies four novel O genotypes. J. Clin. Microbiol. 57: e00768-19.
  34. Luthje P, Brauner A. 2014. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv. Microb. Physiol. 65: 337-372. https://doi.org/10.1016/bs.ampbs.2014.08.006
  35. Ohno M, Hasegawa M, Hayashi A, Caballero-Flores G, Alteri CJ, Lawley TD, et al. 2020. Lipopolysaccharide O structure of adherent and invasive Escherichia coli regulates intestinal inflammation via complement C3. PLoS Pathog. 16: e1008928. https://doi.org/10.1371/journal.ppat.1008928
  36. Trabulsi LR, Keller R, Tardelli Gomes TA. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8: 508-513. https://doi.org/10.3201/eid0805.010385
  37. Riley LW, Junio LN, Libaek LB, Schoolnik GK. 1987. Plasmid-encoded expression of lipopolysaccharide O-antigenic polysaccharide in enteropathogenic Escherichia coli. Infect. Immun. 55: 2052-2056. https://doi.org/10.1128/iai.55.9.2052-2056.1987
  38. Caboni M, Pedron T, Rossi O, Goulding D, Pickard D, Citiulo F, et al. 2015. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLoS Pathog. 11: e1004749. https://doi.org/10.1371/journal.ppat.1004749
  39. Holzer SU, Schlumberger MC, Jackel D, Hensel M. 2009. Effect of the O-antigen length of lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica. Infect. Immun. 77: 5458-5470. https://doi.org/10.1128/IAI.00871-09
  40. Saldias MS, Ortega X, Valvano MA. 2009. Burkholderia cenocepacia O antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. J. Med. Microbiol. 58: 1542-1548. https://doi.org/10.1099/jmm.0.013235-0
  41. Aquilini E, Merino S, Tomas JM. 2013. The Plesiomonas shigelloides wb(O1) gene cluster and the role of O1-antigen LPS in pathogenicity. Microb. Pathog. 63: 1-7. https://doi.org/10.1016/j.micpath.2013.05.010
  42. Zuo J, Tu C, Wang Y, Qi K, Hu J, Wang Z, et al. 2019. The role of the wzy gene in lipopolysaccharide biosynthesis and pathogenesis of avian pathogenic Escherichia coli. Microb. Pathog. 127: 296-303. https://doi.org/10.1016/j.micpath.2018.12.021