DOI QR코드

DOI QR Code

Biosurfactant Production by Marine Actinomycetes Isolates Streptomyces althioticus RG3 and Streptomyces californicus RG8 as Promising Sources of Antimicrobial and Antifouling Effects

  • Hamed, Moaz M. (Marine Microbiology Laboratory, Marine Environmental Division, National Institute of Oceanography and Fisheries) ;
  • Abdrabo, Mohamed A.A. (Marine Microbiology Laboratory, Marine Environmental Division, National Institute of Oceanography and Fisheries) ;
  • Youssif, Asmaa M. (Department of Botany and Microbiology, Faculty of Science, Alexandria University)
  • Received : 2021.06.11
  • Accepted : 2021.09.15
  • Published : 2021.09.28

Abstract

Two marine actinobacterial isolates, RG3 and RG8, were identified using 16Sr DNA as Streptomyces althioticus RG3 and Streptomyces californicus RG8 and submitted to the database of genetic information with accession numbers MW661230 and MW661234, respectively; they were found to have emulsification indexes of 60 ± 2.5% and 53 ± 2.2%, respectively. The biosurfactants obtained were stable at a temperature of 35℃ for both strains; they were stable at 10% NaCl, in the case of S. althioticus RG3 and at 10-15% NaCl in the case of Str.californicus RG8; both strains produced the most biosurfactant when exposed to alkaline conditions. We characterized the biosurfactants, including features such as their chemical composition, using Fourier transform infrared spectroscopy analysis. The antimicrobial activity of the biosurfactant extracts was evaluated using the well diffusion method against Vibrio alginolyticus MK170250, Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 4027, and Staphylococcus aureus ATCC 25923. S. althioticus RG3 biosurfactants were found to have better antimicrobial activity than those of Str. californicus RG8, indicating that they may be used in pharmaceutical industries and in the manufacture of antifouling products.

Keywords

References

  1. Naughton P, Marchant R, Naughton V, Banat I. 2019. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 127: 12-28. https://doi.org/10.1111/jam.14243
  2. Marchant R, Banat IM. 2012. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 34: 1597-1605.
  3. Twigg MS, Baccile N, Banat IM, Deziel E, Marchant R, Roelants S, et al. 2020. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb. Biotechnol. 14: 147-170.
  4. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444. https://doi.org/10.1007/s00253-010-2589-0
  5. Sengupta S, Pramanik A, Ghosh A, Bhattacharyya M. 2015. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol. 15: 1-16. https://doi.org/10.1186/s12866-014-0320-5
  6. Shivlata L, Tulasi S. 2015. Thermophilic and alkaliphilic actinobacteria: biology and potential applications. Front. Microbiol. 6: 1014. https://doi.org/10.3389/fmicb.2015.01014
  7. Ballav S, Kerkar S, Thomas S, Augustine N. 2015. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 119: 323-330. https://doi.org/10.1016/j.jbiosc.2014.08.017
  8. Poomthongdee N, Duangmal K, Pathom-aree W. 2015. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants. J. Antibiot. 68: 106-114. https://doi.org/10.1038/ja.2014.117
  9. Nurkanto A, Listyaningsih F, Julistiono H, Agusta A. 2017. Eksplorasi keanekaragaman Aktinomisetes Tanah Ternate sebagai sumber antibiotik. J. Biol. Indones. 6: 325-340.
  10. Elkhawaga M. 2018. Optimization and characterization of biosurfactant from Streptomyces griseoplanus NRRL-ISP 5009 (MS 1). J. Appl. Microbiol. 124: 691-707. https://doi.org/10.1111/jam.13665
  11. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM. 2016. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt. J. Aquat. Res. 42: 301-312. https://doi.org/10.1016/j.ejar.2016.05.004
  12. Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH. 2000. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 31: 249-253. https://doi.org/10.1042/BA19990111
  13. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
  14. Arifiyanto A, Surtiningsih T, Agustina D, Alami NH. 2020. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatal. Agric. Biotechnol. 24: 101513. https://doi.org/10.1016/j.bcab.2020.101513
  15. Korayem A, Abdelhafez A, Zaki M, Saleh E. 2015. Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett-Burman design. Ann. Agric. Sci. 60: 209-217. https://doi.org/10.1016/j.aoas.2015.09.001
  16. Techaoei S, Leelapornpisid P, Santiarwarn D, Lumyong S. 2007. Preliminary screening of biosurfactant-producing microorganisms isolated from hot spring and garages in Northern Thailand. Curr. Appl. Sci. Technol. 7: 38-43.
  17. Bodour AA, Maier RM. 2003. Biosurfactants: types, screening methods, and applications. pp. 750-770. Wiley, New York.
  18. Sharma M, Dangi P, Choudhary M. 2014. Actinomycetes: source, identification, and their applications. Int. J. Curr. Microbiol. App. Sci. 3: 801-832.
  19. Khopade A, Ren B, Liu X-Y, Mahadik K, Zhang L, Kokare C. 2012. Production and characterization of biosurfactant from marine Streptomyces sp. B3. J. Colloid Interface Sci. 367: 311-318. https://doi.org/10.1016/j.jcis.2011.11.009
  20. Barakat KM, Hassan SW, Darwesh OM. 2017. Biosurfactant production by haloalkaliphilic Bacillus strains isolated from Red Sea, Egypt. Egypt. J. Aquat. Res. 43: 205-211. https://doi.org/10.1016/j.ejar.2017.09.001
  21. Maneerat S, Dikit P. 2007. Characterization of cell-associated bioemulsifier from Myroides sp. SM1, a marine bacterium. Cell 29: 770.
  22. Lowry O, Rosebrough N, Farr A, Randall R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.. https://doi.org/10.1016/S0021-9258(19)52451-6
  23. Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. 1956. Phenol sulphuric acid method for total carbohydrate. Anal. Chem. 26: 350. https://doi.org/10.1021/ac60086a021
  24. Madhu AN, Prapulla SG. 2014. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol. 172: 1777-1789. https://doi.org/10.1007/s12010-013-0649-5
  25. Zambry NS, Ayoib A, Noh NAM, Yahya ARM. 2017. Production and partial characterization of biosurfactant produced by Streptomyces sp. R1. Bioprocess Biosys. Eng. 40: 1007-1016. https://doi.org/10.1007/s00449-017-1764-4
  26. Chakraborty S, Ghosh M, Chakraborti S, Jana S, Sen KK, Kokare C. 2015. Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation. Int. J. Biol. Macromol. 79: 405-412. https://doi.org/10.1016/j.ijbiomac.2015.04.068
  27. Kokare C, Kadam S, Mahadik K, Chopade B. 2007. Studies on bioemulsifier production from marine Streptomyces sp. S1. Ind. J. Biotechnol. 6: 78-84.
  28. Cooper DG, Goldenberg BG. 1987. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 53: 224-229. https://doi.org/10.1128/aem.53.2.224-229.1987
  29. Elazzazy AM, Abdelmoneim T, Almaghrabi O. 2015. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J. Biol. Sci. 22: 466-475. https://doi.org/10.1016/j.sjbs.2014.11.018
  30. Demirjian DC, Moris-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
  31. Kiran GS, Hema T, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, et al. 2009. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf. B Biointerfaces 73: 250-256. https://doi.org/10.1016/j.colsurfb.2009.05.025
  32. Kalyani A, Naga Sireesha G, Aditya A, Girija Sankar G, Prabhakar T. 2014. Production optimization of rhamnolipid biosurfactant by Streptomyces coelicoflavus (NBRC 15399T) using Plackett-Burman design. Eur. J. Biotechnol. Biosci. 1: 7-13.
  33. Bento FM, Oliveira Camargo FA, Okeke BC, Frankenberger WT. 2005. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res. 160: 249. https://doi.org/10.1016/j.micres.2004.08.005
  34. Dhail S. 2012. Isolation of potent biosurfactant producing bacteria from oil spilled marine water and marine sediments. Afr. J. Biotechnol. 11: 16751-16757.
  35. Deng MC, Li J, Hong YH, Xu XM, Chen WX, Yuan JP, et al. 2016. Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ 01. J. Appl. Microbiol. 120: 889-899. https://doi.org/10.1111/jam.13065
  36. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285: 198-204. https://doi.org/10.1016/j.desal.2011.10.002
  37. Hayder NH, Alaa S, Abdulmalik H. 2014. Optimized conditions for bioemulsifier production by local Streptomyces sp. SS 20 isolated from hydrocarbon contaminated soil. Rom. Biotechnol. Lett. 19: 8979-8993.
  38. El-Sersy NA. 2012. Plackett-Burman design to optimize biosurfactant production by marine Bacillus subtilis N10. Rom. Biotechnol. Lett. 17: 7049-7064.
  39. Prieto L, Michelon M, Burkert J, Kalil S, Burkert C. 2008. The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71: 1781-1785. https://doi.org/10.1016/j.chemosphere.2008.01.003
  40. Gudina EJ, Teixeira JA, Rodrigues LR. 2016. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs 14: 38. https://doi.org/10.3390/md14020038
  41. Rufino RD, Sarubbo LA, Neto BB, Campos-Takaki GM. 2008. Experimental design for the production of tensio-active agent by Candida lipolytica. J. Ind. Microbiol. Biotechnol. 35: 907-914. https://doi.org/10.1007/s10295-008-0364-3
  42. Thavasi R, Jayalakshmi S, Banat IM. 2011. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour. Technol. 102: 3366-3372. https://doi.org/10.1016/j.biortech.2010.11.071
  43. Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM. 2013. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf. B Biointerfaces 102: 202-209. https://doi.org/10.1016/j.colsurfb.2012.08.008
  44. Santos A, Silva M, Costa E, Rufino R, Santos V, Ramos C, et al. 2018. Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region. Braz. J. Med. Biol. Res. 51: e6657. https://doi.org/10.1590/1414-431x20176657
  45. Santos E, Teixeira M, Converti A, Porto A, Sarubbo L. 2019. Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatal. Agric. Biotechnol. 17: 142-150. https://doi.org/10.1016/j.bcab.2018.10.014
  46. Rangarajan V, Sen R. 2013. An inexpensive strategy for facilitated recovery of metals and fermentation products by foam fractionation process. Colloids Surf. B Biointerfaces 104: 99-106. https://doi.org/10.1016/j.colsurfb.2012.12.007
  47. Pereira F, Almeida JR, Paulino M, Grilo IR, Macedo H, Cunha I, et al. 2020. Antifouling napyradiomycins from marine-derived Actinomycetes Streptomyces aculeolatus. Mar. Drugs 18: 63. https://doi.org/10.3390/md18010063