참고문헌
- Aboshosha, H., Mara, T.G. and Izukawa, N. (2020), "Towards Performance-Based Design under Thunderstorm Winds: A New Method for Wind Speed Evaluation Using Historical Records and Monte Carlo Simulations", Wind Struct., 31(2), 85-102. https://doi.org/10.12989/WAS.2020.31.2.085.
- Albermani, F.G.A. and S. Kitipornchai. (2003), "Numerical simulation of structural behaviour of transmission Towers", Thin-Wall. Struct., 41(2-3), 167-177. https://doi.org/10.1016/S0263-8231(02)00085-X.
- Alminhana, F., Albermani, F. and Mason, M. (2015), "Comparison of responses of guyed and freestanding transmission line towers under conductor breakage loading", Int. J. Struct. Stabil. Dyn., 15(8), 1-21. https://doi.org/10.1142/S0219455415400234.
- ASCE (2015), Design of Latticed Steel Transmission Structures. ANSI/ASCE Standard. Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413760.
- Asgarian, B., Eslamlou, S.D., Zaghi, A.E. and Mehr, M. (2016), "Progressive collapse analysis of power transmission towers", J. Construct. Steel Res., 123(August), 31-40. https://doi.org/10.1016/j.jcsr.2016.04.021.
- BSI (2017), Publication Overhead Transmission Lines - Design Criteria
- Cai, J., Xu, Q., Cao, M. and Yang, B. (2019), "A novel importance sampling method of power system reliability assessment considering multi-state units and correlation between wind speed and load", Int. J. Electric. Power Energy Syst., 109(July 2018), 217-226. https://doi.org/10.1016/j.ijepes.2019.02.019.
- Cai, Y., Qiang X., Songtao X., Liang H. and Ahsan K. (2019), "Fragility modelling framework for transmission line towers under winds", Eng. Struct., 191(March), 686-697. https://doi.org/10.1016/j.engstruct.2019.04.096.
- Carvalho, H., Correia, J., Jesus, A.D. and Calcada, R. (2018), "Aerodynamic damping in cables of overhead transmission lines subjected to wind loads", Wind Eng., 42(4), 268-275. https://doi.org/10.1177/0309524X18777312.
- Da Silva, J.G.S., Vellasco, P.D.S., De Andrade, S.A.L. and De Oliveira, M.I.R. (2005), "Structural assessment of current steel design models for transmission and telecommunication towers", J. Construct. Steel Res., 61(8), 1108-1134. https://doi.org/10.1016/j.jcsr.2005.02.009.
- de Oliveira, C.C., Carvalho, H., Verga Mendes, V.R., Correia, J.A. F.D.O. and Fazeres-Ferradosa, T. (2020), "Nonlinear dynamic analysis of transmission line cables under synoptic wind loads", Practice Periodic. Struct. Des. Construct., 25(4), 04020035. https://doi.org/10.1061/(asce)sc.1943-5576.0000514.
- Ditlevsen, O. and Madsen, H.O. (1996), Structural Reliability Methods. John Wiley & Sons Ltd.
- Edgar, T.H. and Sordo, E. (2017), "Structural behaviour of lattice transmission towers subjected to wind load", Struct. Infrastruct. Eng., 13(11), 1462-1475. https://doi.org/10.1080/15732479.2017.1290120.
- El Damatty, A. and Elawady, A. (2018), "Critical load cases for lattice transmission line structures subjected to downbursts: Economic implications for design of transmission lines", Eng. Struct., 159(December2017), 213-226. https://doi.org/10.1016/j.engstruct.2017.12.043.
- Farzaneh, M. (2008), Atmospheric Icing of Power Networks. Springer.
- Fekr, M.R. and McClure, G. (1998), "Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines", Atmos. Res. 46(1-2), 1-11. https://doi.org/10.1016/S0169-8095(97)00046-X.
- Fu, X. and Hong-Nan L. (2018), "Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load", J. Wind Eng. Ind. Aerod., 173(February), 147-155. https://doi.org/10.1016/j.jweia.2017.12.009.
- Fu, X., Hong Nan L. and Jia W. (2019), "Failure analysis of a transmission tower subjected to combined wind and rainfall excitations", Struct. Des. Tall Spec. Build., 28(10), 1-19. https://doi.org/10.1002/tal.1615.
- Fu, X., Jia W., Hong-Nan L., Jia-Xiang L. and Li-Dong Y. (2019), "Full-scale test and its numerical simulation of a transmission tower under extreme wind loads", J. Wind Eng. Ind. Aerod., 190(November), 119-133. https://doi.org/10.1016/j.jweia.2019.04.011.
- Fu, X., Jia, W. and Hong-Nan L. (2018), "Failure analysis of a transmission tower induced by wind loads," In The 2018 Structures Congress (Structures18). Songdo Convensia, Incheon, Korea.
- Gayathri, B. and Raghavan R. (2018), "Joint stress based deflection limits for transmission line towers", Steel Compos. Struct., 26(1), 45-53. https://doi.org/10.12989/SCS.2018.26.1.045.
- Huda, F., Itsuro K., Naoki H. and Shozo, K. (2013), "Bolt loosening analysis and diagnosis by non-contact laser excitation vibration tests", Mech. Syst. Sig. Proc. 40(2), 589-604. https://doi.org/10.1016/j.ymssp.2013.05.023.
- Hur, J. and Abdollah S. (2019), Multi-Hazard Probabilistic Risk Analysis of Off-Site Overhead Transmission Systems
- Ibrahim, I., Haitham A. and Ashraf El D. (2020), "Numerical characterization of downburst wind field at WindEEE dome", Wind Struct., 30(3), 231-243. https://doi.org/10.12989/WAS.2020.30.3.231.
- Jiang, W.Q., Wang, Z.Q., McClure, G., Wang, G.L. and Geng, J. D. (2011), "Accurate modeling of joint effects in lattice transmission towers", Eng. Struct., 33(5), 1817-1827. https://doi.org/10.1016/j.engstruct.2011.02.022.
- Kitipornchai, S., Al-Bermani, F.G.A. and Peyrot, A.H. (1994), "Effect of bolt slippage on ultimate behavior of lattice structures", J. Struct. Eng., 120(8), 2281-2187. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2281).
- Lee, P.S. and McClure, G. (2007), "Elastoplastic large deformation analysis of a lattice steel tower structure and comparison with full-scale tests", J. Construct. Steel Res., 63(5), 709-717. https://doi.org/10.1016/j.jcsr.2006.06.041.
- Lemaire, M. (2013), Structural Reliability. London, Wiley.
- Li, X., Wei, Z., Huawei, N. and Zheng Yi, W. (2018), "Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds", Eng. Struct., 175 (July), 517-530. https://doi.org/10.1016/j.engstruct.2018.08.061.
- Liu, Z., Zhangjun L., Chenggao H. and Hailin L. (2019), "Dimension-reduced probabilistic approach of 3-D wind field for wind-induced response analysis of transmission tower", J. Wind Eng. Ind. Aerod., 190(693), 309-321. https://doi.org/10.1016/j.jweia.2019.05.013.
- Liu, Z.X. and Feng, X.B. (2019), "A real-time reliable condition assessment system for 500 kV transmission towers based on stress measurement", Mathem. Prob. Eng., 2019(January), 1-8. https://doi.org/10.1155/2019/3241897.
- Lu, C., Ou, Y., Ma, X. and Mills, J.E. (2016), "Structural analysis of lattice steel transmission towers: A review", J. Steel Struct. Construct., 2(1), 1-11. https://doi.org/10.4172/2472-0437.1000114.
- Ma, L., Paolo, B. and Vasileios C. (2020), "Fragility models of electrical conductors in power transmission networks subjected to hurricanes", Struct. Safety 82(February), 101890. https://doi.org/10.1016/j.strusafe.2019.101890.
- Mahsuli, M. and Haukaas, T. (2013), "Computer program for multimodel reliability and optimization analysis", J. Comput. Civil Eng., 27(1), 87-98. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000204.
- Manis, P. and Bloodworth, A.G. (2017), "Climate change and extreme wind effects on transmission towers", Proceedings of the Institution of Civil Engineers: Structures and Buildings, 170(2), 81-97. https://doi.org/10.1680/jstbu.16.00013.
- McClure, G. and Lapointe, M. (2003), "Modeling the structural dynamic response of overhead transmission lines", Comput. Struct., 81(8-11), 825-834. https://doi.org/10.1016/S0045-7949(02)00472-8.
- Melchers, R.E. (1999), Structural Reliability Analysis and Prediction. Chichester, John Wiley.
- Meshmesha, H.M., Kennedy, J.B., Sennah, K. and Moradi, S. (2019), "Static and dynamic analysis of guyed steel lattice towers", Struct. Eng. Mech., 69(5), 567-577. https://doi.org/10.12989/SEM.2019.69.5.567.
- Mohammadi Darestani, Y., Shafieezadeh, A. and Cha, K. (2020), "Effect of modelling complexities on extreme wind hazard performance of steel lattice transmission towers", Struct. Infrastruct. Eng., 16(6), 898-915. https://doi.org/10.1080/15732479.2019.1673783.
- OpenSees, P.E.E.R. (2006), Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center. University of California, Berkeley, California.
- Pan, H., Tian, L., Fu, X. and Li, H. (2020), "Sensitivities of the seismic response and fragility estimate of a transmission tower to structural and ground motion uncertainties", J. Construct. Steel Res., 167(April), 105941. https://doi.org/10.1016/j.jcsr.2020.105941.
- Rao, N.P., Mohan, S.J. and Lakshmanan, N. (2005), "A study on failure of cross arms in transmission line towers during prototype testing", Int. J. Struct. Stabil. Dyn., 5(3), 435-455. https://doi.org/10.1142/S0219455405001672.
- Rezaei, S.N., Chouinard, L., Langlois, S. and Legeron, F. (2017), "A probabilistic framework based on statistical learning theory for structural reliability analysis of transmission line systems", Struct. Infrastruct. Eng., 13(12), 1538-1552. https://doi.org/10.1080/15732479.2017.1299771.
- Salari, S., Hormozabad, S.J., Ghorbani-Tanha, A.K. and Rahimian, M. (2019), "Innovative mobile TMD system for semi-active vibration control of Inclined Sagged Cables", KSCE J. Civil Eng. 23(2), 641-653. https://doi.org/10.1007/s12205-018-0161-0.
- Shehata, A.Y., El Damatty, A.A. and Savory, E. (2005), "Finite element modeling of transmission line under downburst wind loading", Finite Elements Anal. Des., 42(1), 71-89. https://doi.org/10.1016/j.finel.2005.05.005.
- Standard National and Canada Norme (2003), "CAN/CSA-C22.3 No. 60826-10" 10(60826).
- Szafran, J. and Rykaluk, K. (2017), "Steel lattice tower under ultimate load - Chosen joint analysis", Civil Environment. Eng. Reports 25(2), 199-210. https://doi.org/10.1515/ceer-2017-0030.
- Szafran, J., Juszczyk, K. and Kaminski, M. (2019), "Experiment-based reliability analysis of structural joints in a steel lattice tower", J. Construct. Steel Res. 154(March), 278-292. https://doi.org/10.1016/j.jcsr.2018.11.006.
- Szafran, J., Juszczyk, K. and Kaminski, M. (2020), "Reliability assessment of steel lattice tower subjected to random wind load by the stochastic finite-element method", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng. 6(1), 04020003. https://doi.org/10.1061/ajrua6.0001040.
- Takeuchi, M., Maeda, J. and Ishida, N. (2010), "Aerodynamic damping properties of two transmission towers estimated by combining several identification methods", J. Wind Eng. Ind. Aerod., 98(12), 872-880. https://doi.org/10.1016/j.jweia.2010.09.001.
- Temple, M.C., Sakla, S.S., Stchyrba, D. and Ellis, D. (1994), "Arrangement of interconnectors for starred angle compression members", Canadian J. Civil Eng., 21(1), 76-80. https://doi.org/10.1139/l94-007.
- Tessari, R.K., Kroetz, H.M. and Beck, A.T. (2017), "Performance-based design of steel towers subject to wind action", Eng. Struct., 143, 549-557. https://doi.org/10.1016/j.engstruct.2017.03.053.
- Tian, L., Haiyang P. and Ruisheng M. (2019), "Probabilistic seismic demand model and fragility analysis of transmission tower subjected to near-field ground motions", J. Construct. Steel Res., 156(May), 266-275. https://doi.org/10.1016/j.jcsr.2019.02.011.
- Tian, L., Pan H., Ruisheng M. and Xu D. (2019), "Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system", Struct. Eng. Mech., 71(3), 305-315. https://doi.org/10.12989/SEM.2019.71.3.305.
- Tian, L., Xin Z. and Xing F. (2020), "Fragility analysis of a long-span transmission tower-line system under wind loads", Advan. Struct. Eng., February, 136943322090398. https://doi.org/10.1177/1369433220903983.
- Velazquez, S., Carta, J.A. and Matias, J.M. (2011), "Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per KWh produced by a wind turbine at a candidate site: A case study in the Canary Islands", Appl. Energy, 88(11), 3869-3881. https://doi.org/10.1016/j.apenergy.2011.05.007.
- Winkelmann, K., Jakubowska, P. and Soltysik, B. (2017), "Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading", AIP Conference Proceedings 1822(March). https://doi.org/10.1063/1.4977690.
- Yaghoobi, S. and Shooshtari, A. (2018), "Joint slip investigation based on finite element modelling verified by experimental results on wind turbine lattice towers", Frontiers Struct. Civil Eng., 12(3), 341-351. https://doi.org/10.1007/s11709-017-0393-y.
- Yang, S.C., Liu, T.J. and Hong, H.P. (2017), "Reliability of tower and tower-line systems under spatiotemporally varying wind or earthquake loads", J. Struct. Eng., 143(10), 04017137. https://doi.org/10.1061/(asce)st.1943-541x.0001835.
- Yang, X., Lei, Y., Liu, L. and Huang, J. (2020), "Simulation of nonstationary wind in one-spatial dimension with time-varying coherence by wavenumber-frequency spectrum and application to transmission line", Struct. Eng. Mech., 75(4), 425-434. https://doi.org/10.12989/SEM.2020.75.4.425.
- Zhang, H., Lin C., Shuhan Y., Tianyang Z. and Peng W. (2020). "Spatial-temporal reliability and damage assessment of transmission networks under hurricanes", IEEE Transact. Smart Grid 11(2), 1044-1054. https://doi.org/10.1109/TSG.2019.2930013.
- Zhao, N., Guoqing H., Ruili L. and Liuliu P. (2020), "A remote long-term and high-frequency wind measurement system: Design, comparison and field testing", Wind Struct., 31(1), 21-29. https://doi.org/10.12989/WAS.2020.31.1.21.
- Zhou, W., Gong, C. and Hong, H.P. (2017), "New perspective on application of first-order reliability method for estimating system reliability", J. Eng. Mech., 143(9), 04017074. https://doi.org/10.1061/(asce)em.1943-7889.0001280.
- Zhuge, Y., Mills, J.E. and Ma, X. (2012), "Modelling of steel lattice tower angle legs reinforced for increased load capacity", Eng. Struct., 43, 160-168. https://doi.org/10.1016/j.engstruct.2012.05.017.