과제정보
Special thanks to the company WAGG SA, without which this investigation would not have been possible. To CONICET and all the members and facilities of the UIDET LaCLyFA of the Aeronautical Department of the Faculty of Engineering of the National University of La Plata.
참고문헌
- ASCE (American Society of Civil Engineering) (1999), Wind Tunnel Studies of Buildings and Structures. Manuals of Practice (MOP).
- Baglin, P. (2002), ARIES Canopy Wind Tunnel Results.
- Baskaran, A., Murty, B. and Tanaka, H. (2011), "Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems", Wind and Structures, 14(5), 383-411. https://doi.org/10.12989/was.2011.14.5.383
- Burton, J. and Gosling, P. (2003), "Wind tunnel pressure measurements on conic shaped membrane roof arrangements", Proceeding of International Conference on Textile Composite and Inflatable Structures - Structural Membranes, CIMNE, Barcelona, Spain. 427-432.
- Carradine, D.M. (1998), Experiments on The Response of ArchSupported Membrane Shelters to Snow and Wind Loading, Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, U.S.A.
- CEN/TC 152 (2015), EN 13782:2015 - Temporary Structure - Tents - Safety.
- CEN/TC 250 (2005), EN 1991-1-4: Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions.
- Chang, C.C. and Ji, Y.F. (2007), "Flexible videogrammetric technique for three-dimensional structural vibration measurement", J. Eng. Mech., 133(6), 656-664. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(656).
- CIRSOC 102-2005 (2005), "Reglamento Argentino de la Accion del Viento Sobre las Construcciones", INTI Argentina.
- Cook, N.J. and Mayne, J.R. (1979), "A novel working approach to the assessment of wind loads for equivalent static design", J. Wind Eng. Ind. Aerod., 4, 149-164. https://doi.org/10.1016/0167-6105(79)90043-6.
- Davenport A.G. (1965), "The relationship of wind structure to wind loading", Proceeding 1st Conference on Wind Effects on Building and Structures, National Physical Laboratory, Teddington, United Kingdom, 53-102.
- Davenport, A.G. (1960), "Rationale for determining design wind velocities", ASCE J. Struct. Div., 86(5), 39-68. https://doi.org/10.1061/JSDEAG.0000521.
- Elnokaly, A., Chilton, J. and Wilson, R. (2004), "CFD investigation of airflow around conic tensile membrane structures", Proceeding of the International Sympsoium on Shell and Spatial Structures from Model to Realization, IASS, Montpellier, France, 138-139.
- Forster, B. and Mollaert, M. (2004), "European Design Guide for Tensile Surface Structures", Tensinet VUB, Brussels.
- Gorlin, W.B. (2009a), "Wind loads for temporary structures: Making the case for industrywide standards", J. Architect. Eng., 15(2), 35-36. https://doi.org/10.1061/(ASCE)1076-0431(2009)15:2(35).
- Gorlin, W.B. (2009b), Temporary Structures Need Wind-Load Standards, Structure magazine.
- Holmes, J.D. (2007), Wind Loading of Structures, Taylor & Francis, London, England.
- Irwin, P., Gamble, S.L. and Taylor D.A. (2011), "Effect of roof size, heat transfer, and climate on snow loads: Studies for the 1995 NBC", Canadian Journal of Civil Engineering, 22(4), 770-784. https://doi.org/10.1139/l95-087
- Liu, C.J., Zheng, Z.L., Long, J., Guo, J.J. and Wu, K. (2013), "Dynamic analysis for nonlinear vibration of prestressed orthotropic membranes with viscous damping", Int. J. Struct. Stabil. Dyn., 13(2), 60-66. https://doi.org/10.1142/S0219455413500181
- Liu, M., Chen, X. and Yang, Q. (2016), "Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows", J. Wind Eng. Ind. Aerod., 150(4), 1-14. https://doi.org/10.1016/j.jweia.2015.11.012.
- Luo, J. and Han, D. (2009), "3D wind-induced response analysis of a cable-membrane structure", J. Zhejiang University - Sci. A: Appl. Phys. Eng., 10(3), 337-344. https://doi.org/10.1631/jzus.A0820430
- Michalski, A., Kermel, P., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K.U. (2004), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29 m umbrella", J. Wind Eng. Ind. Aerod., 99(4), 400-413. https://doi.org/10.1016/j.jweia.2010.12.010.
- Nagai, Y., Okada, A., Miyasato, N. and Saitoh, M. (2010), "Basic study on multi-bay horn-shaped membrane roof: Evaluation of wind load and influence of supporting system on structural behavior under winds", Int. J. Space Struct., 25(1), 35-43. https://doi.org/10.1260/0266-3511.25.1.35
- Nagai, Y., Okada, A., Miyasato, N. and Saitoh, M. (2011), Wind Tunnels and Experimental Fluid Dynamics Research, Chapter: Wind Tunnel Tests on the Horn-Shaped Membrane Roof, 325-348, InTech, London, United Kingdom.
- Nagai, Y., Okada, A., Miyasato, N. and Saitoh, M. (2012), "Wind response of horn-shaped membrane roof and proposal of gust factor for membrane structures", J. Int. Assoc. Shell Spatial Struct., 53(3), 169-176.
- Peterka, J.A. (1983), "Selection of local peak pressure coefficients for wind tunnel studies of buildings", J. Wind Eng. Ind. Aerod., 13(1-3), 447-188. https://doi.org/10.1016/0167-6105(83)90166-6
- Qingshan, Y., Yue, W. and Weiliang, Z. (2010), "Experimental study on interaction between membrane structure and wind environment", Earthq. Eng. Eng. Vib., 9(4), 523-532. https://doi.org/10.1007/s11803-010-0034-0.
- Rank, E., Halfmann, A., Scholz, D., Gluck, M., Breuer, M. and Durst, F. (2005), "Wind loads on lightweight structures: Numerical simulation and wind tunnel tests", Gesellschaft fur Angewandte Mathematik und Mechanik (GAMM), 28(1), 73-89. https://doi.org/10.1002/gamm.201490014.
- Rizzo, F. and Ricciardelli, F. (2016), "Design approach of wind load for Hyperbolic paraboloid roof with circular and elliptical plan", Eng. Struct., 139, 153-169. https://doi.org/10.1016/j.engstruct.2017.02.035
- Rizzo, F. and Sepe, V. (2015), "Static loads to simulate dynamic effects of wind on hyperbolic paraboloid roofs with square plan", J. Wind Eng. Ind. Aerod., 137, 46-57. https://doi.org/10.1016/j.jweia.2014.11.012.
- Rizzo, F., D'Asdia, P., Lazzari, M. and Procino, L. (2011), "Wind action evaluation on tension roofs of hyperbolic paraboloid shape", Eng. Struct., 33(2), 445-461. https://doi.org/10.1016/j.engstruct.2010.11.001.
- Rizzo, F., D'Asdia, P., Ricciardelli, F. and Bartoli, G. (2012), "Characterization of pressure coefficients on hyperbolic paraboloid roofs", J. Wind Eng. Ind. Aerod., 102, 61-71. https://doi.org/10.1016/j.jweia.2012.01.003.
- Simiu, E. and Scanlan, H. (1996), Wind Effects On Structures, John Wiley & Sons, New York.
- Sun, X., Wu, Y., Yang, Q. and Shen, S. (2008), "Wind tunnel tests on the aeroelastic behaviors on pretensioned sadle-shaped suspended roofs", Proceeding of the 6th International Colloquium on Bluff Body Aerodynamics and Applications, BBAA, Milano, Italy, 1-10.
- Takeda, F., Yoshino, T. and Uematsu, Y. (2014), "Design wind force coefficients for hyperbolic paraboloid free roofs", J. Phys. Sci. Appl., 4(1), 1-19.
- Xu, Y., Zheng, Z., Liu, C., Wu, K. and Song, W. (2018), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction", Wind Struct., 26(6), 355-367. http://dx.doi.org/10.12989/was.2018.26.6.355.
- Xuanyi, Z., Zhihui, H., Ming, G., An-an Z., Weiyu, Z. and Wei, F. (2013), "Research on wind-induced responses of a largescale membrane structure", Earthq. Eng. Eng. Vib., 12 (2), 297-305. https://doi.org/10.1007/s11803-013-0172-2.
- Yang, Q., Wu, Y. and Zhu, W. (2010), "Experimental study on interaction between membrane structures and wind environment", Earthq. Eng. Eng. Vib., 9(4), 523-532. https://doi.org/10.1007/s11803-010-0034-0.