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Abstract. In this work we give new upper and lower bounds for the numerical radius of

a complex square matrix A using the entries and the trace of A.

1. Introduction

The numerical range of a complex n× n matrix A is the set defined as

W (A) = {〈Ax, x〉, x ∈ Cn, ‖x‖ = 1},

where 〈x, y〉 is the usual inner product of elements x and y in Cn. The numerical
range of the matrix A localizes its spectrum i.e Λ(A) ⊆W (A), where Λ(A) denotes
the spectrum of A. The numerical range has several properties.

The numerical radius ω(A) is defined by

ω(A) = sup
λ∈W (A)

|λ| or ω(A) = max
‖x‖=1

|〈Ax, x〉|.

Numerous contributions related to numerical radius were made by various people
including M. Goldberg, E. Tadmor and G. Zwas [1], also J. Merikoski and R. Kumar
[4]. We cite here some properties of the numerical radius which are well known see
[2]. Let A, B be two complex matrices and α ∈ C,

1. ω(A+B) ≤ ω(A) + ω(B),

2. ω(αA) = |α|ω(A),

3. ω(A) = ω(A∗),

where A∗ is the conjugate transpose of A.
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If M is any principle submatrix of A, then

ω(M) ≤ ω(A).

In this paper, without knowing the numerical radius of the matrix A, we can
estimate it by giving some upper and lower bounds using the entries and the trace
of A.

Let A be a complex n× n matrix with eigenvalues λ1, · · · , λn, the spectral radius
of A is defined by

ρ(A) = max
1≤i≤n

|λi|.

It is well known, see [1], that

ρ(A) ≤ ω(A) ≤ ‖A‖ ≤ 2ω(A),

where ‖A‖ = max‖x‖=1 ‖Ax‖ is the spectral norm.
Let tr(A) =

∑n
i=1 λi denote the trace of A and let su(A) =

∑n
i,j=1 aij denote the

sum of A.
Let ei be the column vector whose i-th component is equal to 1 while all the re-
maining components are 0.
Let R(A) and c denote the radius and center of the smallest disc D which contains
all eigenvalues of A.

In [3] C. R. Johnson gave an upper bound for the numerical radius

ω(A) ≤ max
i

 n∑
j=1

|aij |+ |aji|
2

 .

J. K. Merikoski and R. Kumar [4] gave some lower bounds for the numerical radius
ω(A) for example :

max
i
|aii| ≤ ω(A)

and ∣∣∣∣su(A)

n

∣∣∣∣ ≤ ω(A).

2. Bounds For the Numerical Radius

In this section, we give some upper and lowers bounds for the numerical radius
of a given complex n× n matrix.

Proposition 2.1. For any matrix A, we have

R(A) ≤ ω(A).
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Theorem 2.2. Let A = (aij) be a normal n× n matrix, we have

max
i 6=j
|aij | ≤ ω(A).

Proof. Let z be any complex number. For i 6= j,

|aij | = |e∗i (A− zI)ej | ≤ ‖ei‖.‖(A− zI)ej‖ = ‖(A− zI)ej‖
≤ sup

‖u‖=1

‖(A− zI)u‖ = max
i
|λi − z|.

Since infz maxi |λi − z| = R(A), then maxi6=j |aij | ≤ ω(A). 2

Corollary 2.3. Let A = (aij) be a normal n× n matrix, we have

1

2
max
i6=j

(|aij |+ |aji|) ≤ ω(A).

Proof. Applying the result of the above theorem to the matrix
zA+ zA∗

2
, where

z ∈ C with |z| = 1, it follows that
1

2
max
i 6=j
|zaij + zaji| ≤ ω(A). Since max

|z|=1
|zaij +

zaji| = |aij |+ |aji|, then the required result is obtained. 2

Theorem 2.4. Let A = (aij) be a complex n× n matrix, we have

ω(A) ≤ max
i
|aii|+ (n− 1) max

i 6=j
|aij |.

Proof. Write x = (x1, x2, · · · , xn) and let λ ∈ W (A) then λ = xAx∗ with ‖x‖ = 1.
Hence λ =

∑
i,j aijxjx

∗
i , thus |λ| ≤

∑
i,j |aij |ξiξj where ξi = |xi|. It follows that

|λ| ≤
∑
i

|aii|ξ2i +
∑
i6=j

|aij |ξjξi

≤ max
i
|aii|+ max

i 6=j
|aij |

∑
i<j

2ξiξj


≤ max

i
|aii|+ max

i 6=j
|aij |

(
(n− 1)

∑
i

ξ2i

)
= max

i
|aii|+ (n− 1) max

i 6=j
|aij |.

We have used the fact that 2ξiξj ≤ ξ2i + ξ2j . Since ω(A) = maxλ∈W (A) |λ|, then this
completes the proof. 2
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Corollary 2.5. Let A = (aij) be a complex n× n matrix, we have

ω(A) ≤ nmax
i,j
|aij |.

Theorem 2.6. Let A = (aij) be a complex n× n matrix, we have

ω(A) ≤ max
i
|aii|+

∑
i 6=j

|aij |2
1/2

.

Proof. Let λ ∈ W (A) then λ =
∑
i,j aijxjx

∗
i . Hence |λ| ≤

∑
i,j |aij |ξiξj where

ξi = |xi|. It follows that |λ| ≤
∑
i |aii|ξ2i +

∑
i 6=j |aij |ξjξi. Rewriting |aij |ξjξi as

|aij | × ξjξi and applying the Cauchy Schwarz’s inequality, we obtain

|λ| ≤ max
i
|aii|+

∑
i6=j

|aij |2
1/2∑

i 6=j

ξ2i ξ
2
j

1/2

≤ max
i
|aii|+

∑
i6=j

|aij |2
1/2∑

i

ξ2i .
∑
j

ξ2j

1/2

≤ max
i
|aii|+

∑
i 6=j

|aij |2
1/2

.

Since ω(A) = maxλ∈W (A) |λ|, then the desired result is obtained. 2

Let A = (aij) be a complex n × n matrix and let Li =
∑
j |aij | − |aii|, Cj =∑

i |aij | − |ajj |.

Theorem 2.7. Let A = (aij), Li and Cj be as described above and let L =
max(Li), C = max(Cj). Then

ω(A) ≤ max
i
|aii|+ (LC)1/2.

Proof. Let λ ∈ W (A) then λ =
∑
i,j aijxjx

∗
i . Hence |λ| ≤

∑
i,j |aij |ξiξj where

ξi = |xi|. Thus |λ| ≤
∑
i |aii|ξ2i +

∑
i 6=j |aij |ξjξi.

Rewriting |aij |ξjξi as |aij |1/2ξi × |aij |1/2ξj and applying the Cauchy Schwarz’s in-



New Bounds for the Numerical Radius of a Matrix in Terms of Its Entries 587

equality, it follows that

|λ| ≤ max
i
|aii|+

∑
i 6=j

|aij |ξ2i

1/2∑
i6=j

|aij |ξ2j

1/2

= max
i
|aii|+

(∑
i

Liξ
2
i

)1/2
∑

j

Cjξ
2
j

1/2

≤ max
i
|aii|+

(
L
∑
i

ξ2i

)1/2
C∑

j

ξ2j

1/2

= max
i
|aii|+ (LC)1/2.

Since ω(A) = maxλ∈W (A) |λ|, then the assertion follows immediately. 2

Theorem 2.8. Let A = (aij), Li and Ci be as described above and let Si =
Li + Ci

2
, S = max

i
Si. Then

ω(A) ≤ max
i
|aii|+ S.

Proof. Let λ ∈ W (A) then λ =
∑
i,j aijxjx

∗
i . Hence |λ| ≤

∑
i,j |aij |ξiξj where

ξi = |xi|. It follows that

|λ| ≤
∑
i

|aii|ξ2i +
∑
i 6=j

|aij |ξjξi

≤ max
i
|aii|+

1

2

∑
i 6=j

|aij |(ξ2i + ξ2j )

= max
i
|aii|+

1

2

∑
i

Liξ
2
i +

1

2

∑
j

Cjξ
2
j

= max
i
|aii|+

∑
i

Siξ
2
i

≤ max
i
|aii|+ S.

Since ω(A) = maxλ∈W (A) |λ|, then the result follows directly. 2

Lemma 2.9. If z1, · · · , zn are complex numbers, then∣∣∣∣z1 + · · ·+ zn
n

∣∣∣∣ ≤ max
i
|zi|.
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Corollary 2.10. Let A be a complex n × n matrix with eigenvalues λ1, · · · , λn.
Then ∣∣∣∣ tr(A)

n

∣∣∣∣ ≤ ω(A).

Proof. Using the previous lemma, zi = λi, it follows that
∣∣∣ tr(A)

n

∣∣∣ ≤ ρ(A) ≤ ω(A). 2

Theorem 2.11. Let A = (aij) be a complex n× n matrix. Then

max
i 6=j

∣∣∣∣aii + ajj − aij − aji
2

∣∣∣∣ ≤ ω(A).

Proof. For i 6= j, we have

∣∣∣∣ (ei − ej)∗A(ei − ej)
2

∣∣∣∣ =

∣∣∣∣aii + ajj − aij − aji
2

∣∣∣∣ ≤ ω(A).

2

Theorem 2.12. Let A = (aij) be a complex n× n matrix. Then

n

n− 1

∣∣∣∣ tr(A)

n
− su(A)

n2

∣∣∣∣ ≤ ω(A).

Proof. Using Lemma 2.9. where the z’s are the n(n− 1) numbers

zij =
aii + ajj − aij − aji

2
, i 6= j, thus

max
i6=j

∣∣∣∣aii + ajj − aij − aji
2

∣∣∣∣ ≥ 1

n(n− 1)

∣∣∣∣∣∣
∑
i

∑
j 6=i

aii + ajj − aij − aji
2

∣∣∣∣∣∣
=

1

n(n− 1)

∣∣∣∣∣∣n
n∑
i=1

aii −
n∑

i,j=1

aij

∣∣∣∣∣∣
=

n

n− 1

∣∣∣∣ tr(A)

n
− su(A)

n2

∣∣∣∣ .
Using the previous theorem then the required statement follows immediately. 2

Theorem 2.13. Let A be a complex n × n matrix with eigenvalues λ1, · · · , λn.
Then √

1

n

(
n∑
i=1

|λi|2 −
|tr(A)|2

n

) 1
2

≤ ω(A).

Proof. We have
n∑
i=1

|λi − c|2 ≤ nR2(A),
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where c and R(A) are the center and the radius of the smallest disc D, respectively.
On the other hand,

n∑
i=1

|λi − c|2 =

n∑
i=1

(
|λi|2 − cλi − cλi + |c|2

)
=

n∑
i=1

|λi|2 −
|tr(A)|2

n
+ n

∣∣∣∣c− tr(A)

n

∣∣∣∣2 .
It is clear that the choice c = tr(A)/n gives the smallest possible value for this last

expression. Hence
1

n

(
n∑
i=1

|λi|2 −
|tr(A)|2

n

)
≤ R2(A) ≤ ω2(A). 2

Corollary 2.14. Let A be a normal n× n matrix. Then√
1

n

(
‖A‖2Fr −

|tr(A)|2

n

) 1
2

≤ ω(A),

where ‖A‖2Fr =
∑n
i,j=1 |aij |2 = trAA∗ is the Frobenius norm.

Proof. Since A is normal, then
∑n
i=1 |λi|2 = ‖A‖2Fr. Hence the desired result

follows. 2

Theorem 2.15. Let A = (aij) be a Hermitian n× n matrix. Then

1

2
max
i6=j

{
aii + ajj +

√
(aii − ajj)2 + 4|aij |2

}
≤ ω(A).

Proof. Let M be any principal submatrix of A. Let 1 ≤ i < j ≤ n and

M =

(
aii aij
aji ajj

)
,

then

ρ(M) =
1

2

{
aii + ajj +

√
(aii − ajj)2 + 4|aij |2

}
≤ ω(M) ≤ ω(A).

2

3. The Areal Numerical Radius of Matrices

Let Γ(A) denotes the area of the smallest disc D which contains all eigenvalues
of the matrix A.
R. A. Smith and L. Mirsky in [5] called areal spread of the matrix A the ratio
σ(A)

‖A‖2
where σ(A) is the minimal area in the complex plane and ‖.‖ is the euclidean
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matrix norm. In analogy with this concept, let
Γ(A)

ω2(A)
be the areal numerical radius

of A. In the following theorem we give an estimate to the supremum of the areal
numerical radius of A as A ranges over all nonzero n× n matrices.

Theorem 3.1. Let A be a complex n×n matrix and let Γ(A) be as described above.
Then

sup

(
Γ(A)

ω2(A)

)
= π,

where the supremum is taken over all nonzero n× n matrices A.

Proof. Since Γ(A) = πR2(A), it is sufficient to prove that sup
R(A)

ω(A)
= 1. We have

R(A) ≤ ρ(A) ≤ ω(A), on the other hand, taking A = diag(−1, 0, · · · , 0, 1), it follows

that R(A) = 1 and ω(A) = 1. Hence sup
R(A)

ω(A)
= 1, this completes the proof. 2
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