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Abstract. We study the value distribution theory of L-functions and completely resolve

a question from Yang [10]. This question is related to L-functions sharing three finite

values with meromorphic functions. The main result in this paper extends corresponding

results from Li [10].

1. Introduction and Main Results

Throughout this paper, by meromorphic functions we will always mean mero-
morphic functions in the complex plane. We assume that the reader is familiar
with the basic notions and results in the Nevanlinna theory, which can be found,
for example, in [4, 9, 18, 19]. It will be convenient to let E ⊂ (0,+∞) denote any
set of positive real numbers of finite linear measure, not necessarily the same at
each occurrence. For a nonconstant meromorphic function h, we denote by T (r, h)
the Nevanlinna characteristic function of h and by S(r, h) any quantity satisfying
S(r, h) = o(T (r, h)), as r ̸∈ E and r runs to infinity. Let k be a positive integer,
and let a be a complex value in the extended complex plane. Next we denote by
N(k(r, 1/(h− a)) the counting function of those a-points of the nonconstant mero-
morphic function h in |z| < r, where each point in N(k(r, 1/(h − a)) is counted
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according to its multiplicity, and each point in N(k(r, 1/(h − a)) is of multiplicity
≥ k. Here N(k(r, 1/(h−∞)) means N(k(r, h).

Let f and g be two nonconstant meromorphic functions, and let a be a value
in the extended plane. We say that f and g share the value a CM, provided that
f and g have the same a-points in the complex plane, and each common a-point
of f and g has the same multiplicities related to f and g. We say that f and g
share the value a IM, provided that f and g have the same a-points in the complex
plane (cf.[18]). In terms of sharing values, two nonconstant meromorphic functions
in the complex plane must be identically equal if they share five values IM, and one
must be a Möbius transformation of the other one if they share four values CM;
the numbers “five” and “four” are the best possible, as shown by Nevanlinna (cf.
[15, 18]). L-functions, with the Riemann zeta function as a prototype, are important
objects in number theory, and value distribution of L-functions has been studied
extensively. See, for example, Ki[7], Li[10, 11, 12] Hu-Li[6] and Steuding [17].

This paper concerns the question of how an L-function is uniquely determined
in terms of the pre-images of complex values in the extended complex plane, or
sharing values. We refer the reader to the monograph [17] for a detailed discussion
on the topic and related works. Throughout the paper, an L-function always means
an L-function L in the Selberg class, which includes the Riemann zeta function

ζ(s) =
∞∑

n=1
n−s and essentially those Dirichlet series where one might expect a

Riemann hypothesis. Such an L-function is defined to be a Dirichlet series L(s) =
∞∑

n=1
a(n)n−s satisfying the following axioms (cf.[16, 17]):

(i) Ramanujan hypothesis. a(n) ≪ nε for every ε > 0.

(ii) Analytic continuation. There is a nonnegative integer k such that (s −
1)kL(s) is an entire function of finite order.

(iii) Functional equation. L satisfies a functional equation of type

ΛL(s) = ωΛL(1− s),

where

ΛL(s) = L(s)Qs
K∏
j=1

Γ(λjs+ νj)

with positive real numbers Q, λj and complex numbers νj , ω with Reνj ≥ 0 and
|ω| = 1.

(iv) Euler product hypothesis. L(s) =
∏

p exp

( ∞∑
k=1

b(pk)
pks

)
with suitable coef-

ficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2, where the product is taken
over all prime numbers p.
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We first recall the following result due to Steuding [17], which actually holds
without the Euler product hypothesis:

Theorem A.([17, p.152]) If two L-functions L1 and L2 with a(1) = 1 share a
complex value c ̸= ∞ CM, then L1 = L2.

Remark 1.1. In 2016, Hu-Li [6] pointed out that Theorem A is false when c = 1.
A counter example was given by Hu-Li [6, Remark 4] as follows: Let L1(s) = 1+ 2

4s

and L2(s) = 1 + 3
9s . Then L1 and L2 trivially satisfy axioms (i) and (ii). Also, one

can check that L1 satisfies the functional equation

2sL(s) = 21−sL(1− s),

and L2 satisfies the functional equation

3sL(s) = 31−sL(1− s).

Thus, L1 and L2 also satisfy axiom (iii). It is clear that L1 − 1 and L2 − 1 do
not have any zeros and thus satisfy the assumptions of Theorem A with c = 1, but
L1 ̸≡ L2.

Theorem A implies that two L-functions with a(1) = 1 must be identically
equal if they have the same zeros with counting multiplicities. Two L-functions
with “enough” common zeros without counting multiplicities are expected to be
dependent in a certain sense (cf.[1]). Since L-functions are analytically continued as
meromorphic functions in the complex plane, in order to study how an L-function
is uniquely determined by pre-images of complex values in the extended plane, one
should examine the situation involving an arbitrary L-function and an arbitrary
meromorphic function. The first observation on this uniqueness question is that
the above theorem no longer holds for an L-function and a meromorphic function.
For instance, the function ζ and ζeg, where g is any entire function, share 0 CM,
but they are not identically equal. It is natural to consider two sharing values, i.e.,
whether two sharing values with counting multiplicities would force an L-function
and a meromorphic function to be identically equal. This turns out not to be the
case either. For instance, consider the function f = 2ζ

ζ+1 . It is then clear that ζ
and f share 0, 1 CM, but they are not identically equal. Observe, however, when
considering L-functions, these functions have only one possible pole at s = 1, which
is implicit in the conditions of the above theorem. Thus, this leads us to consider the
natural objects of those meromorphic functions with finitely many poles (cf.[10]).
The following uniqueness theorem was then established by Li [10] in 2009:

Theorem B.([10]) Let f be a meromorphic function in the complex plane such that
f has finitely many poles, and let a and b be two distinct finite values. If f and a
nonconstant L-function L share a CM and b IM, then f = L.

Remark 1.2. The number “two” in Theorem B is the best possible, as shown by
the above example with L = ζ and f = ζeg.
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By Theorem B we can get the following result:

Corollary A.([10]) Let f be a meromorphic function in the complex plane, and let
a, b, c be three distinct values in the extended complex plane such that a ∈ C and
b = ∞ or c = ∞. If f shares a CM and b, c IM with a nonconstant L-function L,
then f = L.

In a communication to Professor Li, Yang asked the following question:

Question A.([10]) If f is a meromorphic function in C that shares three distinct
values a, b CM and c IM with the Riemann zeta function ζ, where c ̸∈ {a, b, 0,∞},
is f equal to ζ ?

Remark 1.3. By taking L = ζ in Corollary A, we can find that the conclusion of
Corollary A holds, which gives a positive answer to Question A provided that any
one of a, b, c is ∞ in Question A.

Next we consider the first, the second and the fourth Painlevé equations given
respectively by

(PI) ω′′ = z + 6ω2,

(PII) ω′′ = 2ω3 + zω + α with α ∈ C,
(PIV) 2ωω′′ = (ω′)2 + 3ω4 + 8zω3 + 4(z2 − α)ω2 + β with α, β ∈ C.

In 2007, Lin-Tohge [13] obtained some results similar to Theorem B. Indeed,
Lin-Tohge [13] studied some shared-value properties of the first, the second and the
fourth Painlevé transcendents by applying their distinctive value distribution, and
proved the following results:

Theorem C.([13, Theorem 1]) Let ω be an arbitrary nonconstant solution of one
of the equations (PI), (PII) and (PIV), and let f be a nonconstant meromorphic
function that shares four distinct values a1, a2, a3, a4 IM with ω, where a1, a2, a3,
a4 are four distinct values in the extended complex plane, then f = ω.

Theorem D.([13, Theorem 2]) Let ω be an arbitrary solution of (PI) and f be a
meromorphic function. Assume that f and ω share two distinct values a1 and a2
CM, where a1 and a2 are two distinct values in the extended complex plane, then
we have

lim
r→∞

N0

(
r, 1

f−ω

)
T (r, ω)

= 0 or lim
r→∞

N0

(
r, 1

f−ω

)
T (r, ω)

= ∞.

Theorem F.([13, Theorem 3]) Let ω be an arbitrary solution of (PI). Then there
does not exist a pair of two finite values a, b such that Eω ({a}) ⊆ Eω′ ({b}) . Here
Eω({a}) denotes the set of a-points of ω in the complex plane, where each a-point
of ω with multiplicity m is counted m times in the set Eω({a}). While Eω′({b})
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denotes the set of b-points of ω′ in the complex plane, where each b-point of ω′ with
multiplicity m is counted m times in the set Eω′({b}).

Regarding Theorem B, one may ask, what can be said about the conclusion of
Theorem B if we remove the assumption “f has finitely many poles in the complex
plane” in Theorem B. In this direction, we will prove the following result that is an
extension to Theorem B:

Theorem 1.1. Let f be a meromorphic function in the complex plane, and let a,
b, and c be three distinct finite values. If f and a nonconstant L-function L share
a, b CM and c IM, then f = L.

By Theorem 1.1 we get the following result:

Corollary 1.2. If f is a meromorphic function in C that shares three distinct
values a, b CM and c IM with the Riemann zeta function ζ, where c ̸∈ {a, b,∞},
then f = ζ.

As a special case of Corollary 1.2, we give the following result which completely
resolves Question A:

Corollary 1.3. If f is a meromorphic function in C that shares three distinct
values a, b CM and c IM with the Riemann zeta function ζ, where c ̸∈ {a, b, 0,∞},
then f = ζ.

In the same manner as in the proof of Theorem 1.1, we can get the following
result by Lemma 2.10 in Section 2 of the present paper:

Theorem 1.4. Let f be a meromorphic function in the complex plane, let L be
a nonconstant L-function, and let a, b, and c be three distinct finite values in the
complex plane. Suppose that f (k) and L(k) share a, b CM and c IM, where k ≥ 1 is
a positive integer. Then f (k) = L(k).

Throughout this paper, we will apply Nevanlinna theory to prove the main
result in this paper.

2. Preliminaries

In this section, we will give some important lemmas to prove the main result
of the present paper. For convenience in stating the following first result from
Gundersen [3], we shall use the following notation: we shall let (f,H) denote a pair
that consists of a transcendental meromorphic function f and a finite set

H = {(k1, j1), (k2, j2), . . . , (kq, jq)}

of distinct pairs of integers that satisfy ki > ji ≥ 0 for 1 ≤ i ≤ q.

Lemma 2.1.([3, Corollary 2]) Let (f,H) be a given pair where f has finite order
ρ, and let ε > 0 be a given constant. Then there exists a set E ⊂ (1,∞) that has
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finite logarithmic measure, such that for all s satisfying |s| ̸∈ E ∪ [0, 1] and for all
(k, j) ∈ H, we have ∣∣∣∣f (k)(s)f (j)(s)

∣∣∣∣ ≤ |s|(k−j)(ρ−1+ε).

The following result is due to Mokhon-ko [14]:

Lemma 2.2.(Valiron-Mokhon-ko lemma, [14]) Let f be a nonconstant meromorphic

function, and let F =
∑p

k=0 akf
k

/∑q
j=0 bjf

j be an irreducible rational function

in f with constant coefficients {ak} and {bj}, where ap ̸= 0 and bq ̸= 0. Then
T (r, F ) = d T (r, f) +O(1), where d = max {p, q}.

We also need the following result due to Lahiri-Sarkar [8]:

Lemma 2.3.([8, Lemma 6]) Let F and G be two distinct nonconstant meromorphic
functions that share 0, 1,∞ IM. If F is a Möbius transformation of G, then F and G
satisfy one of the following six relations: (i) FG = 1; (ii) (F −1)(G−1) = 1; (iii)
F+G = 1; (iv) F = cG; (v) F−1 = c(G−1); (vi) ((c−1)F+1)((c−1)G−c) = −c.
Here c ̸= 0, 1 is a complex number.

The following result is from Gundersen [2]:

Lemma 2.4.([2, Theorem 3]) Suppose that f and g are two nonconstant meromor-
phic functions that share 0, 1, ∞ IM. Then(

1

3
+ o(1)

)
T (r, g) < T (r, f) < (3 + o(1))T (r, g),

as r → ∞ and r ̸∈ E, where E ⊂ (0,+∞) is a subset of finite linear measure.

Lemma 2.5.([20, proof of Lemma 4]) Let f and g be two distinct nonconstant
meromorphic functions that share 0, 1 CM and ∞ IM. If N(r, f) = S(r, f), then

N(2

(
r, 1f

)
+N(2

(
r, 1

f−1

)
= S(r, f).

Lemma 2.6.([21, Lemma 6]) Let f1 and f2 be two nonconstant meromorphic func-
tions such that

N(r, fj) +N

(
r,

1

fj

)
= S(r)

for 1 ≤ j ≤ 2. Then either N0(r, 1; f1, f2) = S(r) or there exist two integers p and
q (|p| + |q| > 0) such that fp1 · fq2 = 1, where N0(r, 1; f1, f2) denotes the reduced
counting function of the common 1-points of f1 and f2, T (r) = T (r, f1) + T (r, f2)
and S(r) = o(T (r)), as r → ∞ and r ̸∈ E, E ⊂ (0,+∞) is a subset of r of finite
linear measure.

For introducing the following result, we first give the following notation (cf.[20]):
Let F and G be two distinct nonconstant meromorphic functions sharing 0, 1 and ∞
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IM. Next we use N0(r) to denote the counting function of those zeros of f − g that
are not zeros of F , F − 1 and 1/F, where each point in N0(r) is counted according
to its multiplicity. We denote by N0(r) the reduced form of N0(r).

The following lemma is essentially due to Zhang [21]:

Lemma 2.7.([21, proof of Theorem 1 and Theorem 2]) Let F and G be two dis-
tinct nonconstant meromorphic functions sharing 0, 1 and ∞ CM, and let N0(r) ̸=
S(r, f). If F is a Möbius transformation of G, then

N0(r) = T (r, F ) + S(r, F ).

If F is not any Möbius transformation of G, then

N0(r) ≤
1

2
T (r, F ) + S(r, F ),

and F and G assume one of the following relations:

(i) F = e(k+1)γ−1
esγ−1 , G = e−(k+1)γ−1

e−sγ−1 ;

(ii) F = esγ−1
e(k+1)γ−1

, G = e−sγ−1
e−(k+1)γ−1

;

(iii) F = esγ−1
e−(k+1−s)γ−1

, G = e−sγ−1
e(k+1−s)γ−1

. Here γ is a nonconstant entire function,
s and k ≥ 2 are positive integers such that s and k + 1 are relatively prime
and 1 ≤ s ≤ k.

Lemma 2.8.([22]) Let s (> 0) and t are relatively prime integers, and let c be a
finite complex number such that cs = 1, then there exists one and only one common
zero of ωs − 1 and ωt − c.

Finally we prove the following result which plays an important role in proving
the main results of this paper:

Lemma 2.9. Let F and G be two distinct nonconstant meromorphic functions
sharing 0, 1 CM and ∞ IM. Suppose that F is not a Möbius transformation of G.
If N(r, F ) = S(r, F ), then

(i) N0

(
r, 1

F ′

)
= N0

(
r, 1

F ′

)
+ S(r, F ), N

(
r, 1

F ′

)
= N0

(
r, 1

F ′

)
+ S(r, F ), the same

identities hold for G.

(ii) T (r, F ) = N
(
r, 1

G′

)
+N0(r)+S(r, F ), T (r,G) = N

(
r, 1

F ′

)
+N0(r)+S(r, F ),

N0(r) = N0(r) + S(r, F ).

Here N0(r,
1
F ′ )(N0(r,

1
F ′ )) denotes the counting function corresponding to the zeros

of F ′ that are not zeros of F and F −1 (ignoring multiplicities) and N0(r) (N0(r))
is the counting function of the zeros of F −G that are not zeros of G, G− 1 and 1

G
(ignoring multiplicities ).
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Proof. First of all, we set

(2.1)
F − 1

G− 1
= h1,

(2.2)
F

G
= h2

and

(2.3) h0 =
h1
h2
.

By Lemma 2.4 we have

(2.4) S(r, F ) = S(r,G).

By (2.4), Lemma 2.5 and the assumption of Lemma 2.9 we have

(2.5) N(2

(
r,

1

F

)
+N(2

(
r,

1

F − 1

)
+N(r, F ) = S(r, F )

and

(2.6) N(2

(
r,

1

G

)
+N(2

(
r,

1

G− 1

)
+N(r,G) = S(r, F ).

By (2.1)-(2.3), (2.5), (2.6) and the assumption that F and G share 0, 1 CM and ∞
IM we get

(2.7) N (r, hj) +N

(
r,

1

hj

)
= S(r, F ) with 0 ≤ j ≤ 2.

By (2.1)-(2.3) and the assumption that F is not a Möbius transformation .of G we
can see that none of h1, h2 and h0 are constants. Therefore h1 ̸≡ 1, h2 ̸≡ 1 and
h0 ̸≡ 1. This together with (2.1)-(2.3) gives

(2.8) F =
h1 − 1

h0 − 1

and

(2.9) G =
h−1
1 − 1

h−1
0 − 1

.

Set

(2.10) h =

h′
1

h1

h′
0

h0

=

h′
1

h1

h′
1

h1
− h′

2

h2

.
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Then from (2.1), (2.2), (2.3) and (2.10) we can deduce

(2.11) T (r, h) = S(r, F ).

If
h′1
h1

· (h− 1)− h′ = 0,

then

(2.12) h1 = c1(h− 1),

where c1 ̸= 0 is a finite complex number. By (2.11) and (2.12) we deduce

(2.13) T (r, h1) = S(r, F ).

Again from (2.10) and (2.12) we have

(2.14)
h′0
h0

=

c1h
′
1

h1

h1 + c1
= − (c1h

−1
1 + 1)′

c1h
−1
1 + 1

.

By integrating two sides of (2.14) we can get

(2.15) h0 =
c2

c1h
−1
1 + 1

,

where c2 ̸= 0 is a finite complex number. By (2.13) and (2.15) we have

(2.16) T (r, h0) = T (r, h1) +O(1) = S(r, F ).

By (2.8), (2.13) and (2.16) we can get T (r, F ) = S(r, F ), this is impossible. Thus

h′1
h1

· (h− 1)− h′ ̸≡ 0,

which together with (2.8) gives

(2.17) F − h =
h1 − h0h+ h− 1

h0 − 1
.

Set

(2.18) H = (F − h)(h0 − 1) = h1 − h0h+ h− 1.

By (2.10) and (2.18) we get

H ′

H
− h′1
h1

=
(h1 − h0h+ h− 1)′ − h′

1

h1
· (h1 − h0h+ h− 1)

(F − h)(h0 − 1)
=

h′
1

h1
· (h− 1)− h′

F − h
,
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and so we have

(2.19)
1

F − h
=

H′

H − h′
1

h1

h′
1

h1
· (h− 1)− h′

.

By (2.3), (2.11) and (2.19) we deduce

(2.20) m

(
r,

1

F − h

)
= S(r, F )

and

(2.21) N(2(r,
1

F − h
) = S(r, F ).

By (2.1), (2.3) and (2.9) we have

(2.22)
F −G

G− 1
= h1 − 1 and G =

h1 − 1

h1 − h2
.

Thus

(2.23)
G′(F −G)

G(G− 1)
=

(
h′
2

h2
− h′

1

h1
) · h1 + h′

1

h1
· h0 − h′

2

h2

h0 − 1
.

On the other hand, by (2.10) and (2.19) we have

(2.24) (F − h) · (h
′
2

h2
− h′1
h1

) =
(
h′
2

h2
− h′

1

h1
) · h1 + h′

1

h1
· h0 − h′

2

h2

h0 − 1
.

By (2.23) and (2.24) we have

(2.25) −h
′
0

h0
· (F − h) =

G′(F −G)

G(G− 1)
.

By (2.3), (2.5), (2.21), (2.22) and (2.25) we easily deduce

(2.26) N

(
r,

1

F − h

)
= N0(r) +N0

(
r,

1

G′

)
+ S(r, F ),

(2.27) N0(r) = N0(r) + S(r, F )

and

(2.28) N0

(
r,

1

G′

)
= N0

(
r,

1

G′

)
+ S(r, F ).
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By (2.28) and Lemma 2.5 we deduce

(2.29) N0

(
r,

1

G′

)
= N

(
r,

1

G′

)
+ S(r, F ).

By (2.11), (2.20) and (2.26) we deduce

(2.30) T (r, F ) = N0(r) +N0

(
r,

1

G′

)
+ S(r, F ).

In the same manner as above we get

(2.31) N0

(
r,

1

F ′

)
= N0

(
r,

1

F ′

)
+S(r, F ), N0

(
r,

1

F ′

)
= N

(
r,

1

F ′

)
+S(r, F )

and

(2.32) T (r,G) = N0(r) +N0

(
r,

1

F ′

)
+ S(r, F ).

By (2.28), (2.29) and (2.31) we get the conclusion (i) of Lemma 2.9. By (2.27),
(2.30) and (2.32) we get (ii) of Lemma 2.9. This completely proves Lemma 2.9. 2

Lemma 2.10.([5]) Let f be a transcendental meromorphic function in C. Then,
for each K > 1, there exists a set M(K) of the lower logarithmic density at most
d(K) = 1− (2eK−1 − 1)−1 > 0, that is

log densM(K) = lim inf
r→∞

1

log r

∫
M(K)∩[1,r]

dt

t
≤ d(K),

such that, for every positive integer k,

lim sup
r→∞

r ̸∈M(K)

T (r, f)

T (r, f (k))
≤ 3eK.

3. Proof of Theorem 1.1.

First of all, we denote by d the degree of L. Then d = 2
K∑
j=1

λj > 0 (cf.[17, p.113]),

where K and λj are respectively the positive integer and the positive real number in
the functional equation of the axiom (iii) of the definition of L-function. Therefore,
by Steuding [17, p.150] we have

(3.1) T (r, L) =
d

π
r log r +O(r),
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which together with the definition of the order of a meromorphic function implies
that

(3.2) ρ(L) = 1.

By noting that L has only one possible pole at s = 1, we have

(3.3) N(r, L) ≤ log r +O(1), as r → ∞.

On the other hand, by the assumption that f and L share a, b CM and c IM,
we have by the second fundamental theorem that

T (r, f) ≤ N

(
r,

1

f − a

)
+N

(
r,

1

f − b

)
+N

(
r,

1

f − c

)
+O(log r + log T (r, f))

= N

(
r,

1

L− a

)
+N

(
r,

1

L− b

)
+N

(
r,

1

L− c

)
+O(log r + log T (r, f))

≤ 3T (r, L) +O(log r + log T (r, f)),

i.e.,

(3.4) T (r, f) ≤ 3T (r, L) +O(log r + log T (r, f)),

as r → ∞ possibly outside of an exceptional set of finite linear measure. Similarly

(3.5) T (r, L) ≤ 3T (r, f) +O(log r + log T (r, L)),

as r → ∞ possibly outside of an exceptional set of finite linear measure.

By (3.4), (3.5), the definition of the order of a meromorphic function and the
standard reasoning of removing an exceptional set we deduce

(3.6) ρ(f) = ρ(L) = 1.

Now we set
(3.7)

ψ =
f ′

(f − a)(f − b)
− L′

(L− a)(L− b)
=

1

a− b

(
f ′

f − a
− f ′

f − b
− L′

L− a
+

L′

L− b

)
.

By the assumption that f and L share a, b CM, we can deduce from (3.7) that ψ
is an entire function. Therefore, by (3.6) and Lemma 2.1 we have

(3.8) |ψ(z)| ≤ O(|z|ε)

for all z satisfying |z| ̸∈ E ∪ [0, 1]. Here E ⊂ (1,∞) is some subset that has finite
logarithmic measure.
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By (3.8) we can see that ψ is reduced to a constant, say ψ = c1. This together
with (3.7) gives

(3.9)
(f(z)− a)(L(z)− b)

(f(z)− b)(L(z)− a)
= A1e

c1(a−b)z,

where A1 ̸= 0 is a constant. By noting that

(3.10) T
(
r,A1e

c1(a−b)z
)
=

|c1(a− b)|r
π

(1 + o(1)) +O(1), as |z| = r → ∞,

we deduce by (3.1), (3.5) and (3.10) that

(3.11) T
(
r,A1e

c1(a−b)z
)
= o(T (r, L)) and T

(
r,A1e

c1(a−b)z
)
= o(T (r, f)),

as r → ∞.

By (3.9) we consider the following two cases:

Case 1. Suppose that there exists a subset I ⊂ (0,+∞) with infinite linear
measure such that

(3.12) lim
r→∞
r∈I

N
(
r, 1

f−c

)
r

= +∞.

Next we prove

(3.13) A1e
c1(a−b)z ≡ 1.

Indeed, if

(3.14) A1e
c1(a−b)z ̸≡ 1,

by (3.9), (3.11), (3.14) and the assumption that f and L share c IM we have

N

(
r,

1

f − c

)
≤ N

(
r,

1

A1ec1(a−b)z − 1

)
= T

(
r,A1e

c1(a−b)z
)
+O(1)

=
|c1(a− b)|r

π
(1 + o(1)) +O(1),

which contradicts (3.12), and so (3.13) is valid. By (3.9) and (3.13) we get the
conclusion of Theorem 1.1.

Case 2. Suppose that at most there exists a subset E ⊂ (0,+∞) with finite
linear measure such that

(3.15) lim
r→∞
r ̸∈E

N
(
r, 1

f−c

)
r

< +∞.
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Then, by (3.15) we have

(3.16) N

(
r,

1

f − c

)
≤ A2r,

as r → ∞ and r ̸∈ E, where A2 > 0 is a constant. Now we set

(3.17) F =
f − a

f − c
· b− c

b− a
, G =

L− a

L− c
· b− c

b− a
.

Noting the assumption that f and L share a, b CM, and c IM, we have by (3.17)
that F and G share 0, 1 CM, and ∞ IM. Moreover, by (2.4), (3.1), (3.4), (3.5),
(3.6), (3.16), (3.17) and Lemma 2.2 we deduce

(3.18) N(r, F ) = S(r, F ), N(r,G) = S(r, F ).

We discuss the following two subcases:

Subcase 2.1. Suppose that F is a Möbius transformation of G. Then, by
Lemma 2.3 we can see that F and G satisfy one of the six relations (i)-(vi) of Lemma
2.3. We consider the following two subcases:

Subcase 2.1.1. Suppose that F and G satisfy one of (i), (ii) and (vi) of
Lemma 2.3. We discuss this as follows:

Suppose that F and G satisfy (i) of Lemma 2.3. Then, 0 and ∞ are exceptional
values of F and G. Therefore,

(3.19) F = eα, G = e−α,

where α is a nonconstant entire function. By the right formulae of (3.17) and (3.19)
we have

(3.20)
L− a

L− c
· b− c

b− a
= e−α.

By (3.20) and Lemma 2.2 we have

(3.21) T (r, L) = T (r, eα) +O(1).

By (3.6), (3.21) and the definition of the order of a meromorphic function we have
ρ(eα) = 1, which implies that α is a polynomial of degree degα = 1, say α(z) =
A3z + B1, where A3 ̸= 0 and B1 are complex constants. This implies that (3.21)
can be rewritten as

T (r, L) = T (r, eα) +O(1) =
|A3|r
π

(1 + o(1)) +O(1),

which contradicts (3.1).
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Suppose that F and G satisfy one of (ii) and (vi) of Lemma 2.3. Then, in the
same manner as the above discussion we can get a contradiction.

Subcase 2.1.2. Suppose that F and G satisfy one of (iii), (iv) and (v) of
Lemma 2.3, say F and G satisfy (iii) of Lemma 2.3. Then, 0 and 1 are Picard
exceptional values of F and G. Therefore

(3.22)
G

G− 1
= eβ ,

where β is an entire function. By (3.17), (3.22) and Lemma 2.2 we have

(3.23) T (r, L) = T (r, eβ) +O(1).

By (3.6), (3.23) and the definition of the order of a meromorphic function we have
ρ(eβ) = 1, which implies that β is a polynomial of degree deg β = 1, say β(z) =
A4z + B2, where A4 ̸= 0 and B2 are complex constants. This implies that (3.23)
can be rewritten as

T (r, L) = T (r, eβ) +O(1) =
|A4|r
π

(1 + o(1)) +O(1),

which contradicts (3.1).

Suppose that F and G satisfy one of (iv) and (v) of Lemma 2.3. Then, in the
same manner as the above discussion we can get a contradiction.

Subcase 2.2. Suppose that F is not a Möbius transformation of G. In the
same manner as in the proof of Lemma 2.9 we have (2.1)-(2.4) and (2.7)-(2.9). By
(2.8) and (2.9) we have

(3.24) F −G =
(h1 − 1) (1− h−1

2 )

h0 − 1
.

By (2.1)-(2.4), (2.7)-(2.9) and (3.24) we deduce

(3.25) N0(r) = N0(r, 1;h1, h0) + S(r, f) = N0(r, 1;h1, h2) + S(r, F ).

We consider the following two subcases:

Subcase 2.2.1. Suppose that

(3.26) N0(r) ̸= S(r, F ).

Then, by (3.25) and (3.26) we have

(3.27) N0(r, 1;h1, h2) ̸= S(r, F ).

By (2.7), (3.27) and Lemma 2.6 we know that there exist two integers s and t
(|s|+ |t| > 0), such that

(3.28) hs1h
t
2 = 1.
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By substituting (2.1) and (2.2) into (3.28) we get

(3.29) F t(F − 1)s = Gt(G− 1)s.

By noting that F is not a Möbius transformation of G, we deduce by (3.29) that
s, t are nonzero integers such that |s| ̸= |t|, this together with the assumption that
F and G share ∞ IM implies that F and G share ∞ CM. Combining this with
Lemma 2.7 and the assumption that F and G share 0, 1 CM, we can see that F
and G satisfy one of the three relations (i)-(iii) of Lemma 2.7, say F and G satisfy
(i). Then

(3.30) F =
e(k+1)γ − 1

esγ − 1
and G =

e−(k+1)γ − 1

e−sγ − 1
,

where γ is a nonconstant entire function, k ≥ 2 and s are positive integers such
that s and k + 1 are relatively prime and 1 ≤ s ≤ k. Moreover, N0(r) is such that
N0(r) ≤ 1

2 T (r, F ) + S(r, F ). By (3.17), (3.30), Lemma 2.2 and Lemma 2.8 we have
(3.31)
T (r, f) = T (r, F ) +O(1) = T (r,G) +O(1) = T (r.L) +O(1) = kT (r, eγ) +O(1).

By (3.6) and (3.31) we have ρ(eγ) = 1, this implies that γ is a polynomial of degree
deg γ = 1, say γ = A5z + B3, where A5 ̸= 0 and B3 are complex constants. This
implies that (3.23) can be rewritten as

T (r, L) = kT (r, eγ) +O(1) =
k|A5|r
π

(1 + o(1)) +O(1),

which contradicts (3.1).

Subcase 2.2.2. Suppose that

(3.32) N0(r) = S(r, F ).

By noting that L has a pole z = 1 in the complex plane at most, we have by (3.3)
and (3.17) that

(3.33) N

(
r,

1

G− a1

)
≤ log r +O(1),

where a1 = b−c
b−a ̸∈ {0, 1,∞}. Therefore, by (2.4), (3.18), (3.32), (3.33), the conclu-
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sion (ii) of Lemma 2.9 and the second fundamental theorem we have

2T (r,G) ≤ N(r,G) +N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
+N

(
r,

1

G− a1

)
−N

(
r,

1

G′

)
+O(log r)

= N(r,G) +N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
+N

(
r,

1

G− a1

)
+N0(r)

− T (r, F ) +O(log r)

≤ N

(
r,

1

G

)
+N

(
r,

1

G− 1

)
− T (r, F ) +O(log r) + S(r, F )

≤ 2T (r,G)− T (r, F ) +O(log r) + S(r, F ),

i.e.,

(3.34) T (r, F ) = O(log r) + S(r, F ).

By (3.34) we deduce that F is a rational function. This together with (3.6) and
the left equality of (3.17) and Lemma 2.2 implies that T (r, f) = T (r, F ) + O(1) =
O(log r). Combining this with (3.5), we have T (r, L) = O(log r), which contradicts
(3.1). Theorem 1.1 is thus completely proved. 2
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