DOI QR코드

DOI QR Code

만성폐쇄성폐질환을 동반한 무기분진 노출 이직근로자의 혈중 림프구 아형분포에 미치는 영향요인

Influencing Factors of Peripheral Blood Lymphocyte subsets in Workers with Chronic Obstructive Pulmonary Disease Exposed to Inorganic Dust

  • 백진이 (근로복지공단 직업환경연구원) ;
  • 신재훈 (근로복지공단 직업환경연구원) ;
  • 황주환 (근로복지공단 직업환경연구원) ;
  • 이유림 (근로복지공단 직업환경연구원) ;
  • 이종성 (근로복지공단 직업환경연구원) ;
  • 최병순 (근로복지공단 직업환경연구원)
  • Baek, Jin Ee (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service) ;
  • Shin, Jae Hoon (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service) ;
  • Hwang, Joo Hwan (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service) ;
  • Lee, Youlim (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service) ;
  • Lee, Jong Seong (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service) ;
  • Choi, Byung-Soon (Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service)
  • 투고 : 2021.08.23
  • 심사 : 2021.09.29
  • 발행 : 2021.09.30

초록

Objectives: Inorganic dust is known to be a risk factor for chronic obstructive pulmonary disease (COPD) regardless of smoking and pneumoconiosis. Adaptive and innate immunity, including lymphocyte infiltrate, are involved in the pathogenesis of COPD. The purpose of this study was to analyze the lymphocyte subsets in the blood of workers exposed to inorganic dust and confirm the influencing factors. Methods: The general characteristics of the subjects (n=107) were analyzed through a personal questionnaire. Diagnosis of COPD was established according to pulmonary function tests with FEV1/FVC post bronchodilator lower than 70%, according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. For lymphocyte analysis, blood was stained with a fluorescent CD marker and analyzed by flow cytometry. Results: The increase in CD4+ T lymphocytes was associated with a decrease in age (𝛽=-0.273, p=0.008) and an increase in the cumulative smoking amount (𝛽=0.205, p=0.034). The increase in NK cells was associated with an increase in age (𝛽=0.325, p=0.001) and a decrease in cumulative smoking (𝛽=-0.220, p=0.019). The period of exposure to dust, %FVC predicted and %FEV1/FVC, and the relative population of peripheral blood lymphocytes did not show a statistically significant relationship. Conclusions: CD4+ T lymphocytes and CD56+CD16+ NK cells in peripheral blood were more related to age and cumulative smoking than the duration of dust exposure. Age and smoking are major risk factors for the development of COPD, so it can be predicted that peripheral blood CD4+ T lymphocytes and CD56+CD16+ NK cells are related to the development of COPD in workers exposed to inorganic dust.

키워드

참고문헌

  1. Akinori N, Takeshi T, Shunichi A, Susumu S, Hiroyasu I. Lymphocyte subpopulations among passive smokers. JAMA. 2004;291(14):1699-1700. (http://doi.org/10.1001/jama.291.14.1699-b)
  2. Akinori N, Masaya T, Masahiro I, Yosei F, Takshi H et al. Relationship between cumulative effects of smoking and memory CD4+ T lymphocyte subpopulations. Addictive behaviors 2007;23:1526-1531 (http://doi.org/10.1016/j.addbeh.2006.11.007)
  3. Aneal G. Steven RD. Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary diseases. International Journal of COPD. 2008;3(4):531-541 (http://doi.org/10.2147/copd.s1759)
  4. Aurelie P, Tatiana M, Maud T, Emmanuel A, Francois H et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126(4): 458-465. (http://doi.org/10.1111/j.1365-2567.2008.03027.x)
  5. Chavance M, Perrot JY, Annesi I. Smoking, CD45R0+ (memory), and CD45RA+ (naive) CD4+ T cells. American review of respiratory diseases. 1993;148: 237-240 (http://doi.org/10.1164/ajrccm/148.1.237)
  6. Choi JK, Paek DM, Lee JO. Normal predictive values of spirometry in Korean population. Tuberc Respir Dis. 2005;58:230-242 (http://doi.org/10.4046/trd.2005.58.3.230)
  7. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360:2445-2454 (http://doi.org/ 10.1056/NEJMra0804752)
  8. Cristina A, Antonella Ba, Evan OG, Alfredo N, Riccardo P et al. Effects of cigarette smoking on circulating leukocytes and plasma cytokines in monozygotic twins. Clin Chem Lab Med 2015;53(1):57-64. (http://doi.org/10.1515/cclm-2013-0290)
  9. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. 1998;279(18):1477-1482. JAMA. (http://doi.org/10.1001/jama.279.18.1477)
  10. Davis GS, Holmes CE, Pfeiffer LM, Hemenway DR. Lymphocytes, lymphokines, and silicosis. J Environ Pathol Toxicol Oncol. 2001;20 suppl 1:53-65.
  11. Denis V. Drillers and mill operators in an open-pit gold mine are at risk for impaired lung function. Journal of occupational and toxicology. 2016:11:27. (https://doi.org/10.1186/s12995-016-0114-9)
  12. Di SA, Caramori G, Oates T, Capelli A, et al. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J. 2002;20:556-563 https://doi.org/10.1183/09031936.02.00272002
  13. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1(6077):1645-1648 (http://doi.org/10.1136/bmj.1.6077.1645)
  14. Grumelli S, Corry DB, Song LZ, Song L, Green L, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004;1:e8 (http://doi.org/10.1371/journal.pmed.0010008)
  15. Helena F, Mikael M, Reza K, Johan G, Asa MW et al. Distribution of T-cell subsets in BAL fluid of patients with mild to moderate COPD depends on current smoking status and not airway obstruction. Chest. 2014;145(4):711-712 (http://doi.org/10.1378/chest.13-0873)
  16. Hertzberg VS, Kenneth DR, Mary JR, Carol HR. Effect of Occupational Silica Exposure on Pulmonary Function. Chest. 2002;122(2):721-728. (https://doi.org/10.1378/chest.122.2.721)
  17. Hogg J, Chu F, Utokaparch S. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645-2653 (https://doi.org/10.1056/NEJMoa032158)
  18. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216 https://doi.org/10.1146/annurev.immunol.20.083001.084359
  19. Julie SL, Laura H. Aging of the CD4 T Cell Compartment. Open Longev Sci. 2014;6:83-91. (http://doi.org/10.2174/1876326X01206010083)
  20. Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ et al. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 2008; 118:2771-2784 (http://doi.org/10.1172/JCI32709)
  21. Lambrecht BN, Prins JB, Hoogsteden HC. Lung dendritic cells and host immunity to infection. Eur Respir J 2001;18:692-704 https://doi.org/10.1183/09031936.01.18040692
  22. Lee JY, Yoo KH, Ahn HR et al. The role of lymphocyte compartment and cytokine in coal workers pneumoconiosis. Tuberculosis and respiratory diseases. 2002;52:241-250 https://doi.org/10.4046/trd.2002.52.3.241
  23. Lidia A, Neal LB. Cigarette smoking and infection. Archives of internal medicine. 2004;164:2206-2216 (http://doi.org/10.1001/archinte.164.20.2206)
  24. Li M, Yao D, Zeng X, Dimitri K, Zhang Y et al. Age related human T cell subset evolution and senescence. Immunity & Ageing. 2019;24(16) (https://doi.org/10.1186/s12979-019-0165-8)
  25. Lucy F, Richard AU, Jonathan C, Jonathan RL. Killer cells in chronic obstructive pulmonary disease. Clin Sci. 2008;114(8):533-641. (http://doi.org/10.1042/CS20070356)
  26. MacNee W. Pathogenesis of chronic obstructive pulmonary diseases. Proc AM Thorac Soc. 2005;2: 258-266 (http://doi.org/10.1513/pats.200504-045SR)
  27. Marina S, Margherita M, Paola PB, Graziella T, Cecilia B et al. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002;165:1404-1409 (https://doi.org/10.1164/rccm.2107139)
  28. Mills PR, Davies RJ, Devalia JL. Airway epithelial cells, cytokines, and pollutants. Am J Respir Crit Care Med 1999;160:S38-43
  29. Porter DW, Hubbs AF, Mercer R, Robinson VA, Ramsey D et al. Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicol Sci. 2004;79:370-380. (http://doi.org/10.1093/toxsci/kfh110)
  30. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385(9971):899-909 (http://doi.org/10.1183/09031936.00009015)
  31. Qian QZ, Cao XK, Shen FH, Wang Q. Correlations of smoking with cumulative total dust exposure and cumulative abnormal rate of pulmonary function in coal-mine workers. Experimental and Therapeutic Medicine. 2016;12(5):2942-2948 (https://doi.org/10.3892/etm.2016.3700)
  32. Qiu F, Liang CL, Liu H, Zeng YQ, Hou S et al. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget. 2017;8: 268-284. (https://doi.org/10.18632/oncotarget.13613)
  33. Retamales I, Elliott WM, Meshi B, Coxson HO, Pare PD et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med 2001;164:469-473 (https://doi.org/ 10.1164/ajrccm.164.3.2007149)
  34. Richard AU, Jonathan RL, Ian T, Jonathan MC, & Lucy CF. Altered effector function of peripheral cytotoxic cells in COPD. Respiratory Research 2009;10(53):1-13 (http://doi.org/10.1186/1465-9921-10-53)
  35. Sandra HO, Peter ME, Monique Verschuren WM, Maarten S, Inge M et al. Aging-related trajectories of lung function in the general population-The Doetinchem Cohort Study. PLOS ONE 2018;13(5):1-16 (https://doi.org/10.1371/journal.pone.0197250)
  36. Schaberg T, Theilacker C, Nitschke OT, Lode H. Lymphocyte subsets in peripheral blood and smoking habits. Lung. 1997;175(6):387-394. (http://doi.org/10.1007/pl00007585)
  37. Sin DD, Anthonisen NR, Soriano JB, Agusti AG. Mortality in COPD: Role of comorbidities. Eur Respir J. 2006;28:1245-1257 (http://doi.org/10.1183/09031936.00133805)
  38. Ulrich C, Bross KJ, Huck E, Guzman J, Matthys H. Lung and blood lymphocyte subsets in asbestosis and in mixed dust pneumoconiosis. Chest. 1987; 91(1): 110-112. (http://doi.org/10.1378/chest.91.1.110)
  39. Valdes A M, T Andrew, J P Gardner, M Kimura, E Oelsner, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662-664. (http://doi.org/10.1016/S0140-6736(05)66630-5)
  40. Xuehai Z, Aneal SG, Rachel G, Michael WS, Steven RD et al. Peripheral T cell Functions correlate with the severity of chronic obstructive pulmonary disease. The journal of immunology. 2009;182:3270-3277 (http://doi.org/10.4049/jimmunol.0802622)
  41. Yafei R, Le Y, Xiong J, Pei Y, Sun Y. NK Cells in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Front. Immunol. 2021;12:1-11(http://doi.org/10.3389/fimmu.2021.666045)
  42. Yoo CG. Pathogenesis and pathophysiology of COPD. Korean J Med 2009;77:383-400