DOI QR코드

DOI QR Code

Replication Study of Genome-Wide Association Study of Platelet Count in Korean Health Examinees (HEXA) Cohort

  • Jeoung, Min-Ji (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Kong, Yoon-Ji (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Park, Sangjung (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
  • Received : 2021.08.18
  • Accepted : 2021.09.14
  • Published : 2021.09.30

Abstract

Platelets are derived from fragments formed in the cytoplasm of bone marrow megakaryocytes. Platelet count (PLT) can be altered by factors such as platelet production, destruction, and inflammation. In a previous study, the significant single nucleotide polymorphisms (SNP) were reported by the genome-wide association study (GWAS) for PLT in Koreans. In this study, it was confirmed whether significant SNPs were replicated in the HEXA (The Health Examinees) cohort. As a result, the SNPs of the THPO (rs6141), BAK1 (rs210314, rs9296095), GGNBP1 (rs75080135), ACAD10 (rs6490294), and ABCC4 (rs4148441) were significantly correlated with PLT (P < 10-8). At the same time, it was confirmed that the direction of influence was the same according to the genotype. In conclusion, it can be seen that common SNPs are associated with the platelet count regardless of the cohort for Koreans.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education [NRF-2017R1D1A3B03034752].

References

  1. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O'Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martin D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell. 2016. 167: 1415-1429. https://doi.org/10.1016/j.cell.2016.10.042
  2. Bain BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol. 1996. 49: 664-666. https://doi.org/10.1136/jcp.49.8.664
  3. Bessman JD, Williams LJ, Gilmer PR Jr. Mean platelet volume. The inverse relation of platelet size and count in normal subjects, and an artifact of other particles. Am J Clin Pathol. 1981. 76: 289-293. https://doi.org/10.1093/ajcp/76.3.289
  4. Buckley MF, James JW, Brown DE, Whyte GS, Dean MG, Chesterman CN, Donald JA. A novel approach to the assessment of variations in the human platelet count. Thromb Haemost. 2000. 83: 480-484. https://doi.org/10.1055/s-0037-1613840
  5. Chami N, Lettre G. Lessons and Implications from Genome-Wide Association Studies (GWAS) Findings of Blood Cell Phenotypes. Genes (Basel). 2014. 5: 51-64. https://doi.org/10.3390/genes5010051
  6. Cheepala SB, Pitre A, Fukuda Y, Takenaka K, Zhang Y, Wang Y, Frase S, Pestina T, Gartner TK, Jackson C, Schuetz JD. The ABCC4 membrane transporter modulates platelet aggregation. Blood. 2015. 126: 2307-2319.
  7. Chen Z, Tang H, Qayyum R, Schick UM, Nalls MA, Handsaker R, Li J, Lu Y, Yanek LR, Keating B, Meng Y, van Rooij FJ, Okada Y, Kubo M, Rasmussen-Torvik L, Keller MF, Lange L, Evans M, Bottinger EP, Linderman MD, Ruderfer DM, Hakonarson H, Papanicolaou G, Zonderman AB, Gottesman O; BioBank Japan Project; CHARGE Consortium, Thomson C, Ziv E, Singleton AB, Loos RJ, Sleiman PM, Ganesh S, McCarroll S, Becker DM, Wilson JG, Lettre G, Reiner AP. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. Hum Mol Genet. 2013. 22: 2529-2538. https://doi.org/10.1093/hmg/ddt087
  8. Cornish N, Aungraheeta MR, FitzGibbon L, Burley K, Alibhai D, Collins J, Greene D, Downes K; NIHR BioResource, Westbury SK, Turro E, Mumford AD. Monoallelic loss-of-function THPO variants cause heritable thrombocytopenia. Blood Adv. 2020. 4: 920-924. https://doi.org/10.1182/bloodadvances.2019001293
  9. Eicher JD, Lettre G, Johnson AD. The genetics of platelet count and volume in humans. Platelets. 2018. 29: 125-130. https://doi.org/10.1080/09537104.2017.1317732
  10. Ghilardi N, Skoda RC. A single-base deletion in the thrombopoietin (TPO) gene causes familial essential thrombocythemia through a mechanism of more efficient translation of TPO mRNA. Blood. 1999. 94: 1480-1482. https://doi.org/10.1182/blood.v94.4.1480
  11. Ghilardi N, Wiestner A, Skoda RC. Thrombopoietin production is inhibited by a translational mechanism. Blood. 1998. 92: 4023-4030. https://doi.org/10.1182/blood.v92.11.4023.423k54_4023_4030
  12. Gill D, Monori G, Georgakis MK, Tzoulaki I, Laffan M. Genetically Determined Platelet Count and Risk of Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2018. 38: 2862-2869. https://doi.org/10.1161/ATVBAHA.118.311804
  13. Hitchcock IS, Kaushansky K. Thrombopoietin from beginning to end. Br J Haematol. 2014. 165: 259-268. https://doi.org/10.1111/bjh.12772
  14. Jamsai D, Bianco DM, Smith SJ, Merriner DJ, Ly-Huynh JD, Herlihy A, Niranjan B, Gibbs GM, O'Bryan MK. Characterization of gametogenetin 1 (GGN1) and its potential role in male fertility through the interaction with the ion channel regulator, cysteine-rich secretory protein 2 (CRISP2) in the sperm tail. Reproduction. 2008. 135: 751-759. https://doi.org/10.1530/REP-07-0485
  15. Jaremo P, Hansson G, Nilsson O. Elevated inflammatory parameters are associated with lower platelet density in acute myocardial infarctions with ST-elevation. Thromb Res. 2000. 100: 471-478. https://doi.org/10.1016/S0049-3848(00)00366-2
  16. Jedlitschky G, Cattaneo M, Lubenow LE, Rosskopf D, Lecchi A, Artoni A, Motta G, Niessen J, Kroemer HK, Greinacher A. Role of MRP4 (ABCC4) in platelet adenine nucleotide-storage: evidence from patients with delta-storage pool deficiencies. Am J Pathol. 2010. 176: 1097-1103. https://doi.org/10.2353/ajpath.2010.090425
  17. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010. 42: 210-215. https://doi.org/10.1038/ng.531
  18. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, Iwata N, Ikegawa S, Hirata M, Matsuda K, Kubo M, Okada Y, Kamatani Y. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018. 50: 390-400. https://doi.org/10.1038/s41588-018-0047-6
  19. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007. 87: 99-163. https://doi.org/10.1152/physrev.00013.2006
  20. Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013. 98: 10-23. https://doi.org/10.1007/s12185-013-1382-0
  21. Larsen SB, Grove EL, Neergaard-Petersen S, Wurtz M, Hvas AM, Kristensen SD. Thrombopoietin and platelet aggregation in patients with stable coronary artery disease. Platelets. 2017. 28: 822-824. https://doi.org/10.1080/09537104.2017.1296567
  22. Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A, Ratajczak MZ. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol. 2002. 30: 751-760. https://doi.org/10.1016/S0301-472X(02)00810-X
  23. Merritt JL 2nd, Chang IJ. Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency. 2000 Apr 20 [updated 2019 Jun 27]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021.
  24. Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY, Lu Y, Yoon K, Jang HM, Kim YK, Park TJ, Song DS, Park JK, Lee JE, Kim BJ. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci Rep. 2019. 9: 1382. https://doi.org/10.1038/s41598-018-37832-9
  25. Oh JH, Kim YK, Moon S, Kim YJ, Kim BJ. Genome-wide association study identifies candidate Loci associated with platelet count in koreans. Genomics Inform. 2014. 12: 225-230. https://doi.org/10.5808/GI.2014.12.4.225
  26. Pena-Blanco A, Garcia-Saez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018. 285: 416-431. https://doi.org/10.1111/febs.14186
  27. Shameer K, Denny JC, Ding K, Jouni H, Crosslin DR, de Andrade M, Chute CG, Peissig P, Pacheco JA, Li R, Bastarache L, Kho AN, Ritchie MD, Masys DR, Chisholm RL, Larson EB, McCarty CA, Roden DM, Jarvik GP, Kullo IJ. A genome-and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet. 2014. 133: 95-109. https://doi.org/10.1007/s00439-013-1355-7
  28. Shekhawat PS, Matern D, Strauss AW. Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: impact of expanded newborn screening on their diagnosis and management. Pediatr Res. 2005. 57: 78R-86R. https://doi.org/10.1203/01.pdr.0000159631.63843.3e
  29. Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A, Willenborg C, Wright B, Chen L, Li M, Salo P, Voight BF, Burns P, Laskowski RA, Xue Y, Menzel S, Altshuler D, Bradley JR, Bumpstead S, Burnett MS, Devaney J, Doring A, Elosua R, Epstein SE, Erber W, Falchi M, Garner SF, Ghori MJ, Goodall AH, Gwilliam R, Hakonarson HH, Hall AS, Hammond N, Hengstenberg C, Illig T, Konig IR, Knouff CW, McPherson R, Melander O, Mooser V, Nauck M, Nieminen MS, O'Donnell CJ, Peltonen L, Potter SC, Prokisch H, Rader DJ, Rice CM, Roberts R, Salomaa V, Sambrook J, Schreiber S, Schunkert H, Schwartz SM, Serbanovic-Canic J, Sinisalo J, Siscovick DS, Stark K, Surakka I, Stephens J, Thompson JR, Volker U, Volzke H, Watkins NA, Wells GA, Wichmann HE, Van Heel DA, Tyler-Smith C, Thein SL, Kathiresan S, Perola M, Reilly MP, Stewart AF, Erdmann J, Samani NJ, Meisinger C, Greinacher A, Deloukas P, Ouwehand WH, Gieger C. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009. 41: 1182-1190. https://doi.org/10.1038/ng.467
  30. Suhaili SH, Karimian H, Stellato M, Lee TH, Aguilar MI. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys Rev. 2017. 9: 443-457. https://doi.org/10.1007/s12551-017-0308-0
  31. Wang JY, Ye S, Zhong H. The role of bone marrow micro-environment in platelet production and their implications for the treatment of thrombocytopenic diseases. Hematology. 2017. 22: 630-639. https://doi.org/10.1080/10245332.2017.1333274
  32. Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM, Patel YM, Sorokin EP, Avery CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM, Lim U, Lin BM, Lu Y, Nelson SC, Park SL, Poisner H, Preuss MH, Richard MA, Schurmann C, Setiawan VW, Sockell A, Vahi K, Verbanck M, Vishnu A, Walker RW, Young KL, Zubair N, Acuna-Alonso V, Ambite JL, Barnes KC, Boerwinkle E, Bottinger EP, Bustamante CD, Caberto C, Canizales-Quinteros S, Conomos MP, Deelman E, Do R, Doheny K, Fernandez-Rhodes L, Fornage M, Hailu B, Heiss G, Henn BM, Hindorff LA, Jackson RD, Laurie CA, Laurie CC, Li Y, Lin DY, Moreno-Estrada A, Nadkarni G, Norman PJ, Pooler LC, Reiner AP, Romm J, Sabatti C, Sandoval K, Sheng X, Stahl EA, Stram DO, Thornton TA, Wassel CL, Wilkens LR, Winkler CA, Yoneyama S, Buyske S, Haiman CA, Kooperberg C, Le Marchand L, Loos RJF, Matise TC, North KE, Peters U, Kenny EE, Carlson CS. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019. 570: 514-518. https://doi.org/10.1038/s41586-019-1310-4
  33. Wiestner A, Schlemper RJ, van der Maas AP, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet. 1998. 18: 49-52. https://doi.org/10.1038/ng0198-49
  34. Yu X, Xu G, Li B, de Souza Vespoli L, Liu H, Moeder W, Chen S, de Oliveira MVV, Ariadina de Souza S, Shao W, Rodrigues B, Ma Y, Chhajed S, Xue S, Berkowitz GA, Yoshioka K, He P, Shan L. The Receptor Kinases BAK1/SERK4 Regulate Ca2+ Channel-Mediated Cellular Homeostasis for Cell Death Containment. Curr Biol. 2019. 29: 3778-3790.e8. https://doi.org/10.1016/j.cub.2019.09.018
  35. Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B. Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cellspecific protein GGN1. FEBS Lett. 2005. 579: 559-566. https://doi.org/10.1016/j.febslet.2004.10.112