References
- Abbas, S., Benguediab, S., Draiche, K., Bakora, A. and Benguediab, M. (2020), "An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates", Struct. Eng. Mech., 74(3), 365-380. https://doi.org/10.12989/sem.2020.74.3.365.
- Abdul Kareem Abed, Z. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates ", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Abouelregal, A.E. (2020), "On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags", J. Appl. Comput. Mech., 6(3), 445-456. https://doi.org/10.22055/JACM.2019.29960.1649.
- Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akbas, S.D. (2019), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041.
- Benhamed, M.M. and Abouelregal, A.E. (2020), "Influence of temperature pulse on a nickel microbeams under couple stress theory", J. Appl. Comput. Mech., 6(4), 777-787. https://doi.org/10.22055/JACM.2019.30918.1789.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct.,113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. with Comput., https://doi.org/10.1007/s00366-020-01168-8.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Ebrahimi, F. and Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Braz. Soc. Mech. Sci. Eng., 40(9). https://doi.org/10.1007/s40430-018-1350-y.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
- Gbeminiyi, M.S. (2021), "Perturbation Methods to Analysis of Thermal, Fluid Flow and Dynamics Behaviors of Engineering Systems", A Collection of Papers on Chaos Theory and Its Applications., https://doi.org/10.5772/intechopen.96059.
- Ghorbanpour Arani, A., Hashemian, M., Loghman, A. and Mohammadimehr, M. (2011), "Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method", J. Appl. Mech. Tech. Phys., 52(5), 815-824. https://doi.org/10.1134/s0021894411050178.
- Ghugal, Y.M. and Shimpi, R.P. (2002), "A Review of refined shear deformation theories of isotropic and anisotropic laminated plates", J. Reinf. Plast. Comp., 21(9), 775-813. https://doi.org/10.1177/073168402128988481.
- Ghumare, S.M. and Sayyad, A.S. (2019), "Nonlinear hygro-thermo-mechanical analysis of functionally graded plates using a fifth-order plate theory", Arab. J. Sci. Eng., 44, 8727-8745. https://doi.org/10.1007/s13369-019-03894-8.
- Gomes, G.F., de Almeida, F.A., Ancelotti, A.C. and da Cunha, S.S. (2020), "Inverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fields", Eng. with Comput., https://doi.org/10.1007/s00366-020-01027-6.
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., 3(2), 135-155. http://dx.doi.org/10.12989/cme.2021.3.2.135.
- Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020a), "Hygro-Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature Distribution Based on a Modified Beam Theory and Nonlocal Strain Gradient Model", Int. J. Appl. Mech., 12(5). https://doi.org/10.1142/S1758825120500544.
- Jena, S.K., Chakraverty, S., Malikan, M. and Mohammad-Sedighi, H. (2020b), "Implementation of hermite-ritz method and navier's technique for vibration of functionally graded porous nanobeam embedded in winkler-pasternak elastic foundation using bi-helmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.
- Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "New non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029.
- Kant, T. and Khare R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40, 4477-4499. https://doi.org/10.1002/(SICI)10970207(19971230)40:24<4477::AIDNME229>3.0.CO;2-3.
- Karama, M., Afaq, K.S. andMistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/s0020-7683(02)00647-9.
- Karama, M., Afaq, K.S. and Mistou, S. (2009), "A new theory for laminated composite plates", Proc. IMechE Part L: J. Mater. Des. Appl., 223, 53-62. https://doi.org/10.1243/14644207JMDA189.
- Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., 7(1), 51-61. http://doi.org/10.12989/anr.2019.7.1.051
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kiani, Y. and Mirzaei, M. (2018), "Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements", Compos. Struct., 186, 114-122. https://doi.org/10.1016/j.compstruct.2017.11.086.
- Kim, S.E., Thai, H.T. and Lee, J. (2009), "A two variable refined plate theory for laminated composite plates", Compos. Struct., 89(2), 197-205. https://doi.org/10.1016/j.compstruct.2008.07.017.
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056.
- Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Universitatis, Series: Mech. Eng., 18(2), 245-254. https://doi.org/10.22190/FUME200129020L.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", ur. J. Mech. - A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/scs.2020.34.1.141.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mindlin, R.D. (1951)," Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", Journal of Applied Mechanics-transactions of The Asme, 18, 31-38. DOI:10.1007/978-1-4613-8865-4_29.
- Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. with Comput., https://doi.org/10.1007/s00366-020-01002-1.
- Naik, N.S. and Sayyad, A.S. (2019), "An accurate computational model for thermal analysis of laminated composite and sandwich plates", J. Therm. Stresses, 1-21. https://doi.org/10.1080/01495739.2018.1522986.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Pagano, N.J. (1970), "Exact solutions for bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
- Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., 3(1), 1-23. http://doi.org/10.12989/cme.2021.3.1.001.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984.
- Reddy, J.N. and Robbins, D.H. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47(6), 147-169. https://doi.org/10.1115/1.3111076.
- Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
- Sayyad, A.S. and Ghugal, Y.M. (2014), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-267. https://doi.org/10.1007/s10999-014-9244-3.
- Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015), "A four-variable plate theory for thermoelastic bending analysis of laminated composite plates", J. Therm. Stresses, 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019a), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://doi.org/10.12989/scs.2019.32.2.173.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019b), "Size-dependent vibration analysis of laminated composite plates", Steel Compos. Struct., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7). https://doi.org/10.3390/ma13071707.
- Sofiyev, A., Aksogan, O., Schnack, E. and Avcar, M. (2008), "The stability of a three-layered composite conical shell containing a FGM layer subjected to external pressure", Mech. Adv. Mater. Struct., 15(6-7), 461-466. https://doi.org/10.1080/15376490802138492.
- Soltani, D., Khorshidi, M.A. and Sedighi, H.M. (2021), "Higher order and scale-dependent micro-inertia effect on the longitudinal dispersion based on the modified couple stress theory", J. Comput. Design Eng., 8(1), 189-194. https://doi.org/10.1093/jcde/qwaa070.
- Tanzadeh, H. and Amoushahi, H. (2021), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Tounsi, A. (2021), "Towards a theoretical and mathematical proof of the universality of free fall, the equivalence principle, and the confirmation of the Einstein's theory of general relativity", Presentation, 1-9. https://doi.org/10.13140/RG.2.2.18242.30402
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, H., Yan, W. and Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/sem.2020.76.5.599.
- Wu, Z.P., Liu, G.R. and Han, X. (2002), "An Inverse Procedure for Crack Detection in Anisotropic Laminated Plates Using Elastic Waves", Eng. with Comput., 18(2), 116-123. https://doi.org/10.1007/s003660200010.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E.U., Oner, E. and Birinci, A. (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.