DOI QR코드

DOI QR Code

Effect of location of load on shear lag behavior of bonded steel-concrete flexural members

  • Bhardwaj, Ankit (Department of Civil Engineering, Government Engineering College Bharatpur) ;
  • Nagpal, Ashok K. (Department of Civil Engineering, Indian Institute of Technology Delhi) ;
  • Chaudhary, Sandeep (Department of Civil Engineering, Indian Institute of Technology Indore) ;
  • Matsagar, Vasant (Department of Civil Engineering, Indian Institute of Technology Delhi)
  • Received : 2021.04.16
  • Accepted : 2021.08.09
  • Published : 2021.10.10

Abstract

Shear lag is one of the governing phenomena considered in the design of flanged flexural members. The effect of the location of load on shear lag is not well understood yet. This paper presents a study to understand the shear lag behavior in the concrete slab of bonded steel-concrete composite flexural members, conducted with the help of a developed three-dimensional finite element model. The effect of the location of load on shear lag behavior is studied with the help of twelve loading arrangements at the service and the ultimate loads. Three effective widths based on different design criteria are used to understand the effect of the location of load on effective width. These effective widths are effective width for deflection at the service load, effective width for maximum stress at the service load, and effective width for bending moment capacity at the ultimate load. The shear lag behavior is found to be significantly affected by the location of the load. Increase in scaled eccentricity causes shear lag to vary from positive to negative.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial aid from the Department of Science & Technology (DST) India for research project titled, "Experimental and Analytical Studies for the Short- and Long-Term Behavior of Epoxy Bonded Steel-Concrete Composite Bridges" (DST/TSG/STS/2011/92-G/1).

References

  1. ACI 318-19 (2019), "Building Code Requirements for Structural Concrete and Commentary on Building Code Requirements for Structural Concrete", Amer Conc I, Farmington Hills, MI.
  2. Adekola, A.O. (1974), "The dependence of shear lag on partial interaction in composite beams." Int. J. Solids Struct., 10(4), 389-400. https://doi.org/10.1016/0020-7683(74)90108-5.
  3. Alachek, I. and Jurkiewiez, B. (2020), "Experimental and finite element analysis of push-out shear test for adhesive joints between pultruded GFRP and concrete", Int. J. Adhes. Adhes., 98, 1-13. https://doi.org/10.1016/j.ijadhadh.2020.102552.
  4. Amadio, C., Fedrigo, C., Fragiacomo, M. and Macorini, L. (2004). "Experimental evaluation of effective width in steel-concrete composite beams", J. Constr. Steel. Res., 60(2), 199-220. https://doi.org/10.1016/j.jcsr.2003.08.007.
  5. Amadio, C. and Fragiacomo, M. (2002), "Effective width evaluation for steel-concrete composite beams", J. Constr. Steel. Res., 58(3), 373-388. https://doi.org/10.1016/S0143-974X(01)00058-X.
  6. Behnia, A., Chai, H.K. Ranjbar, N. and Behnia, N. (2013), "Finite element analysis of the dynamic response of composite floors subjected to walking induced vibrations", Adv. Struct. Eng., 16(5), 959-974. https://doi.org/10.1260/1369-4332.16.5.959.
  7. Bhardwaj, A., Matsagar, V.A., Nagpal, A.K. and Chaudhary, S. (2020), "Bond behavior in flexural members: numerical studies", Int. J. Steel Struct., 21(1), 225-243. https://doi.org/10.1007/s13296-020-00432-3.
  8. Bouazaoui, L., Jurkiewiez, B., Delmas, Y. and Li, A. (2008), "Static behaviour of a full-scale steel-concrete beam with epoxy-bonding connection", Eng. Struct., 30(7), 1981-1990. https://doi.org/10.1016/j.engstruct.2007.12.018.
  9. Bouazaoui, L., Perrenot, G., Delmas, Y. and Li, A. (2007). "Experimental study of bonded steel concrete composite structures." J. Constr. Steel. Res., 63(9), 1268-1278. https://doi.org/10.1016/j.jcsr.2006.11.002.
  10. Carreira, D.J. and Chu, K.H. (1985), "Stress-Strain Relationship for Plain Concrete in Compression." ACI Struct. J., 82(6), 797-804. https://doi.org/10.14359/10390.
  11. Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Comp. Struct., 7(3), 219-240. https://doi.org/10.12989/scs.2007.7.3.219.
  12. Chiang, M.Y.M. and Herzl, C. (1994), "Plastic deformation analysis of cracked adhesive bonds loaded in shear", Int. J. Solids Struct., 31(18), 2477-2490. https://doi.org/10.1016/0020-7683(94)90032-9.
  13. Dai, J.G., Yokota, H., Iwanami, M. and Kato, E. (2010), "Experimental investigation of the influence of moisture on the bond behavior of FRP to concrete interfaces", J. Compos. Constr., 14(6), 834-844. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000142.
  14. Dai, J.G., Harries, K.A. and Yokota, H. (2008), "A critical steel yielding length model for predicting intermediate crack-induced debonding in FRP -strengthened RC members", Steel Compos. Struct., 8(6), 457-473. https://doi.org/10.12989/scs.2008.8.6.457.
  15. Dassault Systemes Simulia (2013), Abaqus 6.13 User's Manual. Dassault Systemes Simulia Corp., Providence, RI, USA.
  16. Do, J.Y. and Kim, D.K. (2013a), "Effect of substrate surface water on adhesive properties of high flowable VA/VeoVa-modified cement mortar for concrete patching material", J. Korea Inst. Struct. Maint., 17(5), 94-104. https://doi.org/10.11112/jksmi.2013.17.5.094.
  17. Do, J.Y. and Kim, D.K. (2013b), "Adhesive properties of high flowable SBR-modified mortar for concrete patching material dependent on surface water ratio of concrete substrate", J. Korea Inst. Struct. Maint., 17(2), 124-134. http://dx.doi.org/10.11112/jksmi.2013.17.2.124.
  18. EN 1994-1-1 (2004), "Eurocode 4 - design of composite steel concrete structures, part 1.1: general rules and rules for buildings", European Committee for Standardization (CEN), Brussels.
  19. Galuppi, L. and Royer-carfagni, G. (2016), "Effective width of the slab in composite beams with nonlinear shear connection", J. Eng. Mech., 142(4), 2-11. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001042.
  20. Gupta, R.K., Kumar, S., Patel, K.A., Chaudhary, S. and Nagpal, A. K. (2015), "Rapid prediction of deflections in multi-span continuous composite bridges using neural networks", Int. J. Steel Struct., 15(4), 893-909. https://doi.org/10.1007/s13296-015-1211-9.
  21. Hadi, M.N.S. and Yuan, J.S. (2017), "Experimental investigation of composite beams reinforced with GFRP I-beam and steel bars", Constr. Build. Mater., 144, 462-474. https://doi.org/10.1016/j.conbuildmat.2017.03.217.
  22. Jurkiewiez, B., Meaud, C. and Ferrier, E. (2014). "Non-linear models for steel-concrete epoxy-bonded beams", J. Constr. Steel. Res., 100, 108-121. https://doi.org/10.1016/j.jcsr.2014.04.005.
  23. Jurkiewiez, B., Meaud, C. and Michel, L. (2011), "Non linear behaviour of steel-concrete epoxy bonded composite beams", J. Constr. Steel. Res., 67(3), 389-397. https://doi.org/10.1016/j.jcsr.2010.10.002.
  24. Kumar, P. and Chaudhary, S. (2019). "Effect of reinforcement detailing on performance of composite connections with headed studs." Eng. Struct., 179, 476-492. https://doi.org/10.1016/j.engstruct.2018.05.069.
  25. Kumar, P., Chaudhary, S., and Gupta, R. (2017a). "Behaviour of adhesive bonded and mechanically connected steel-concrete composite under impact loading", Procedia Engineer., 173, 447-454. https://doi.org/10.1016/j.proeng.2016.12.062.
  26. Kumar, P., Patnaik, A. and Chaudhary, S. (2017b), "A review on application of structural adhesives in concrete and steel-concrete composite and factors influencing the performance of composite connections", Int. J. Adhes. Adhes., 77, 1-14. https://doi.org/10.1016/j.ijadhadh.2017.03.009.
  27. Kumar, P., Patnaik, A., and Chaudhary, S. (2018). "Effect of bond layer thickness on behaviour of steel-concrete composite connections", Eng. Struct., 177, 268-282. https://doi.org/10.1016/j.engstruct.2018.07.054.
  28. Kumar, S., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2021), "Rapid prediction of long-term deflections in steel-concrete composite bridges through a neural network model", Int. J. Steel Struct., 21, 590-603. https://doi.org/10.1007/s13296-021-00458-1.
  29. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  30. Luo, D., Zhang, Z. and Li, B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. http://dx.doi.org/10.12989/scs.2019.31.1.027.
  31. Luo, Q.Z., Tang, J. and Li, Q.S. (2001), "Negative shear lag effect in box girders with varying depth", J. Struct. Eng.-ASCE, 127, 1236-1239. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:10(1236).
  32. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  33. Meaud, C., Jurkiewiez, B. and Ferrier, E. (2014), "Steel-concrete bonding connection: An experimental study and non-linear finite element analysis", Int. J. Adhes. Adhes., 54, 131-142. https://doi.org/10.1016/j.ijadhadh.2014.05.010.
  34. Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045.
  35. Nie, J.G. and Tao, M.X. (2012), "Slab spatial composite effect in composite frame systems. I: Effective width for the ultimate loading capacity", Eng. Struct., 38, 171-184. https://doi.org/10.1016/j.engstruct.2011.11.034.
  36. Nie, J.G., Tian, C.Y. and Cai, C.S. (2008), "Effective width of steel-concrete composite beam at ultimate strength state", Eng. Struct., 30(5), 1396-1407. https://doi.org/10.1016/j.engstruct.2007.07.027.
  37. Panda, K.C., Bhattacharyya, S.K. and Barai, S.V. (2012), "Shear behaviour of RC T-beams strengthened with U-wrapped GFRP sheet", Steel Compos. Struct., 12(2), 149-166. https://doi.org/10.12989/scs.2012.12.2.149.
  38. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2017), "Nonlinear analysis of biaxially loaded rectangular concrete-filled stainless steel tubular slender beam-columns", Eng. Struct., 140, 120-133. https://doi.org/10.1016/j.engstruct.2017.02.071.
  39. Patel, V.I., Uy, B., Pathirana, S.W., Wood, S., Singh, M. and Trang, B.T. (2018), "Finite element analysis of demountable steel-concrete composite beams under static loading", Adv. Steel Constr., 14(3), 392-411. doi:10.18057/ijasc.2018.14.3.5.
  40. Pendharkar, U., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015), "Rapid prediction of long-term deflections in composite frames", Steel Compos. Struct., 18(3), 547-563. https://doi.org/10.12989/scs.2015.18.3.547.
  41. Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2015). "Cracked span length beam element for service load analysis of steel concrete composite bridges", Comput. Struct., 157, 201-208. https://doi.org/10.1016/j.compstruc.2015.05.024.
  42. Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2017a), "Service load analysis of composite frames using cracked span length frame element", Eng. Struct., 132, 733-744. https://doi.org/10.1016/j.engstruct.2016.11.071.
  43. Ramnavas, M.P., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2017b), "Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors", Struct. Eng. Mech., 64(4), 437-447. https://doi.org/10.12989/sem.2017.64.4.437.
  44. Si Larbi, A., Ferrier, E., Jurkiewiez, B. and Hamelin, P. (2007), "Static behaviour of steel concrete beam connected by bonding", Eng. Struct., 29(6), 1034-1042. https://doi.org/10.1016/j.engstruct.2006.06.015.
  45. Singh, G.J., Mandal, S., Kumar, R. and Kumar, V. (2020), "Simplified analysis of negative shear lag in laminated composite cantilever beam", J. Aerospace Eng., 33(1), 04019103. 10.1061/(asce)as.1943-5525.0001100.
  46. Singh, Y. and Nagpal, A.K. (1995). "Negative shear lag in framed-tube buildings", J. Struct. Eng.-ASCE, 120(11), 3105-3121. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3105).
  47. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. http://dx.doi.org/10.12989/scs.2019.33.1.143.
  48. Souici, A., Berthet, J.F., Li, A. and Rahal, N. (2013), "Behaviour of both mechanically connected and bonded steel-concrete composite beams", Eng. Struct., 49, 11-23. https://doi.org/10.1016/j.engstruct.2012.10.014.
  49. Spremic, M., Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2018). "FE validation of the equivalent diameter calculation model for grouped headed studs", Steel Compos. Struct., 26(3), 375-386. https://doi.org/10.12989/scs.2018.26.3.375.
  50. Uy, B., Patel, V., Li, D. and Aslani, F. (2017), "Behaviour and design of connections for demountable steel and composite structures", Structures, 9, 1-12. https://doi.org/10.1016/j.istruc.2016.06.005.
  51. van Rossum, G. and Drake, F.L. (2011), "An introduction to Python". Network Theory Ltd.
  52. Varshney, L.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2019), "An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams", Struct. Eng. Mech., 70(6), 751-763. https://doi.org/10.12989/sem.2019.70.6.751.
  53. Vu, T.D., Lee, S.Y., Chaudhary, S. and Kim, D.K. (2013), "Effects of tendon damage on static and dynamic behavior of CFTA girder", Steel Compos. Struct., 15(5), 567-583. https://doi.org/10.12989/scs.2013.15.5.567
  54. Wang, J., Uy, B., Li, D. and Song, Y. (2020), "Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections", Steel Compos. Struct., 36(4), 427-446. https://doi.org/10.12989/scs.2020.36.4.427.
  55. Wang, W., Dai, J.G. and Harries, K.A. (2013), "Intermediate crack-induced debonding in RC beams externally strengthened with prestressed FRP laminates", J. Reinf. Plast. Comp., 32(23), 1842-1857. https://doi.org/10.1177/0731684413492574.
  56. Wang, Y.H. and Nie, J.G. (2015), "Effective flange width of steel-concrete composite beam with partial openings in concrete slab", Mater. Struct., 48(10), 3331-3342. https://doi.org/10.1617/s11527-014-0402-8.
  57. Zhao, G. and Li, A. (2008), "Numerical study of a bonded steel and concrete composite beam", Comput. Struct., 86(19-20), 1830-1838. https://doi.org/10.1016/j.compstruc.2008.04.002.
  58. Zheng, T., Lu, Y. and Usmani, A. (2014), "Analytical model for the composite effect of coupled beams with discrete shear connectors", Struct. Eng. Mech., 52(2), 369-389. http://dx.doi.org/10.12989/sem.2014.52.2.369.