DOI QR코드

DOI QR Code

Facile Fabrication of Carbon Nanotubes@CuO Composites by Microwave Method

  • Received : 2021.07.14
  • Accepted : 2021.08.30
  • Published : 2021.09.30

Abstract

In this study, we report a facile fabrication of multi-walled carbon nanotubes (MWCNTs)-CuO composites synthesized by a microwave method using MWCNTs and copper oxide (CuO). The number of copper hydrate precursors affect the size and number of CuO domains formed along the MWCNTs in the composites. The domain size is controllable from 239 nm to 348 nm. The composites are characterized by transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction (XRD), Raman spectroscopy, and UV-Vis spectroscopy. The CuO produced in the composites is confirmed to be tenorite with a monoclinic crystal structure through the XRD patterns of (-111), (111) and (-202).

Keywords

Acknowledgement

본 연구는 한국연구재단의 신진연구지원사업(2019R1C1C1009427)과 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(20015991)과 경기도의 경기도지역협력연구센터(GRRC) 사업(GRRC 2020-B03), 2020년도 한국고무학회 신양장학금 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. M. Endo, M. S. Strano, and P. M. Ajayan, "Potential applications of carbon nanotubes", Carbon Nanotubes, 111, 13 (2007). https://doi.org/10.1007/978-3-540-72865-8_2
  2. D. Y. Kim, M. J. Kim, G. Sung, and J. Y. Sun, "Stretchable and reflective displays: materials, technologies and strategies", Nano Convergence, 6, 1 (2019). https://doi.org/10.1186/s40580-018-0172-z
  3. F. Wang, S. Arai, and M. Endo, "Metallization of multiwalled carbon nanotubes with copper by an electroless deposition process", Electrochem. Commun., 6, 1042 (2004). https://doi.org/10.1016/j.elecom.2004.08.007
  4. R. Mohan, A. M. Shanmugharaj, and R. S. Hun, "An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity", J. Biomed. Mater. Res., 96B, 119 (2011). https://doi.org/10.1002/jbm.b.31747
  5. S. ullah Rather, "Hydrogen uptake of cobalt and copper oxide-multiwalled carbon nanotube composites", Int. J. Hydrogen Energy, 42, 11553 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.066
  6. K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann, and D. H. Fairbrother, "Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments", Carbon, 49, 24 (2011). https://doi.org/10.1016/j.carbon.2010.08.034
  7. M. Gopiraman, S. G. Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and I. S. Kim, "An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole", Carbon, 62, 135 (2013). https://doi.org/10.1016/j.carbon.2013.06.005
  8. J. F. Xu, W. Ji, Z. X. Shen, and S. H. Tang, "Preparation and Characterization of CuO Nanocrystals", J. Solid State Chem., 147, 516 (1999). https://doi.org/10.1006/jssc.1999.8409
  9. K. Zhang, J. M. Suh, T. H. Lee, J. H. Cha, J. W. Choi, H. W. Jang, R. S. Varma, and M. Shokouhimehr, "Copper oxidegraphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water", Nano Convergence, 6, 1 (2019). https://doi.org/10.1186/s40580-018-0172-z
  10. V. B. Nam, T. T. Giang, S. Koo, J. Rho, and D. Lee, "Laser digital patterning of conductive electrodes using metal oxide nanomaterials", Nano Convergence, 7, 1 (2020). https://doi.org/10.1186/s40580-019-0212-3
  11. M. Tomonari, K. Ida, H. Yamashita, and T. Yonezawa, "Size-Controlled Oxidation-Resistant Copper Fine Particles Covered by Biopolymer Nanoskin", J. Nanosci. Nanotechnol., 8, 2468 (2008). https://doi.org/10.1166/jnn.2008.237
  12. N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D'Alessio, P. G. Zambonin, and E. Traversa, "Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties", Chem. Mater., 17, 5255 (2005). https://doi.org/10.1021/cm0505244