DOI QR코드

DOI QR Code

Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity

이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계

  • Yoon, Jiyoung (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Junyeop (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Do, Namgon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Daewoon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
  • 윤지영 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 이준엽 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 도남곤 (한국생산기술연구원 첨단메카트로닉스연구그룹) ;
  • 정대웅 (한국생산기술연구원 첨단메카트로닉스연구그룹)
  • Received : 2021.09.10
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Keywords

Acknowledgement

본 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구이다(2020-DDUP-0348). 본 논문은 한국생산기술연구원 기관주요사업의 지원으로 수행한 연구이다.

References

  1. A. Ortiz Perez, B. Bierer, L. Scholz, J. Wollenstein, and S. Palzer, "A wireless gas sensor network to monitor indoor environmental quality in schools", Sensors., Vol. 18, No. 12, pp. 1-13, 2018. https://doi.org/10.1109/JSEN.2017.2772700
  2. W. Luo, J. Luo, Y. Shuai, K. Zhang, T. Wang, C. Wu, and W. Zhang, "Infrared detector based on crystal ion sliced LiNbO3 single-crystal film with bcb bonding and thermal insulating layer", Microelectron Eng., Vol. 213, pp. 1-5, 2019. https://doi.org/10.1016/j.mee.2019.04.004
  3. G. Visco, L. Campanella, and V. Nobili, "Organic carbons and TOC in waters: an overview of the international norm for its measurement", Microchem. J., Vol. 79, No. 1-2, pp. 185-191, 2005. https://doi.org/10.1016/j.microc.2004.10.018
  4. B. Dweik, K. Harrion, and A. Argun, "Rapid determination of Total Organic Carbon (TOC) in water system", Proc. of the 49th Int. Conf. on Environ Systems, pp. 1-10, Boston, USA, 2019.
  5. S. Esfahani, A Tiele, S. O. Agbroko, and J. A. Covington, "Development of a tuneable NDIR optical electronic nose," Sensors., Vol. 20, No. 23, pp. 6875(1)-6875(16), 2020.
  6. H. Liu, Y. Shi, and T. Wang, "Design of a six-gas NDIR gas sensor using an integrated optical gas chamber", Opt. Express, Vol. 28, No. 8, pp. 11451-11462, 2020. https://doi.org/10.1364/oe.388713
  7. S. H. Yi, "Infrared light absorbance: a new method for temperature compensation in nondispersive infrared CO2 gas sensor", J. Sens. Sci. Technol., Vol. 29, No. 5, pp. 303-311, 2020. https://doi.org/10.46670/jsst.2020.29.5.303
  8. Y. Jing, C. Yuhua, Y. Yupeng, L. Xiaofei, Z. Zuwei, X. Ming, W. Dengpan, M. Jiangdong, M. Yong, and Z. Yuzhe., "Design and optimization of an integrated MEMS gas chamber with high transmissivity", Digit. Commun. Netw., Vol. 7, No. 1, pp. 82-91, 2021. https://doi.org/10.1016/j.dcan.2020.05.006
  9. J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, "Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2um in a compact and optically efficient sensor", Sens. Actuators B Chem., Vol. 186, pp. 580-588, 2013. https://doi.org/10.1016/j.snb.2013.06.006
  10. Y. J. Jeong, D. H. Kang, J. Y. Seo, Y. J. Jo, J. H. Seo, H. Y. Choi, and M. S. Jung, "An optical cavity design for an infrared gas detector using an off-axis parabolic mirror", Curr. Opt. Photonics, Vol. 3, No. 5, pp. 374-381, 2019. https://doi.org/10.3807/copp.2019.3.5.374
  11. J. Hodgkinson and R. P. Tatam, "Optical gas sensing: a review", Meas. Sci. Technol., Vol. 24, No. 1, pp. 012004(1)-012004(59), 2012. https://doi.org/10.1088/0957-0233/24/1/012004
  12. R. V. Maikala, "Modified Beer's Law-historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue", Int. J. Ind. Ergon., Vol. 40, No. 2, pp. 125-134, 2010. https://doi.org/10.1016/j.ergon.2009.02.011
  13. http://www.hitran.com/(retrieved on Jun. 10, 2021.)
  14. J. Maryrwoger, P. Hauer, W. Reichl, R. Schwodiauer, C. Krutzler, and B. Jakoby, "Modeling of Infrared Gas sensors using a ray tracing approach", IEEE Sens. J., Vol. 10, No. 11, pp. 1691-1698, 2010. https://doi.org/10.1109/jsen.2010.2046033
  15. http://hamamatsu.com/(retrieved on Jun. 18, 2021.)
  16. N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung, "Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor", J. Sens. Sci. Technol., Vol. 30, No. 4, pp.250-254, 2021. https://doi.org/10.46670/JSST.2021.30.4.250
  17. M. S. Rauscher, M. Schardt, M. H. Kohler, and A. W. Koch, "Dual-channel mid-infrared sensor based on tunable Fabry-Perot filters for fluid monitoring applications", Sens. Actuators B-Chem., Vol. 259, pp.420-427, 2018. https://doi.org/10.1016/j.snb.2017.12.032