DOI QR코드

DOI QR Code

SSPs 시나리오에 따른 미국쥐손이 적합 서식지 분포 예측

Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios

  • 오영주 ((주)미래환경생태연구소) ;
  • 김명현 (국립농업과학원 기후변화평가과) ;
  • 최순군 (국립농업과학원 기후변화평가과) ;
  • 김민경 (국립농업과학원 기후변화평가과) ;
  • 어진우 (국립농업과학원 기후변화평가과) ;
  • 엽소진 (국립농업과학원 기후변화평가과) ;
  • 방정환 (국립농업과학원 기후변화평가과) ;
  • 이용호 (고려대학교 오정에코리질리언스 연구소)
  • Oh, Young-Ju (Institute for Future Environmental Ecology Co., Ltd.) ;
  • Kim, Myung-Hyun (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Choi, Soon-Kun (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Kim, Min-Kyeong (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Eo, Jinu (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Yeob, So-Jin (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Bang, Jeong Hwan (Climate Change Assessment Division, National Institute of Agricultural Science) ;
  • Lee, Yong Ho (O-jeong-Eco-Resilience Institute)
  • 투고 : 2021.09.17
  • 심사 : 2021.10.01
  • 발행 : 2021.09.30

초록

본 연구는 최근 국내에 귀화식물로 기록된 미국쥐손이의 적합 서식지의 분포에 영향을 미치는 요인을 파악하고, 미래의 변화를 예측하고자 수행되었다. 전국을 대상으로 총 68개 지점에서 미국쥐손이의 출연 자료를 수집하고 MaxEnt 모델을 적용하여 기준년대(1981~2010)와 기후시나리오에 따른 미래의 적합 서식지 분포를 예측했다. 미국쥐손이의 분포에는 강수량 계절성(bio15), 가장 따뜻한 분기의 평균기온(bio10), 가장 건조한 분기의 평균기온(bio09)가 크게 기여하는 것으로 나타났다. 기후변화에 따라 미국쥐손이의 높은 수준의 적합 서식지는 기준년도에 우리나라 면적의 6.43%를 차지하였고, 먼미래(2071~2100)에는 SSP2-4.5 하에서 92.60%까지, SSP5-4.8 하에서 98.36%까지 차지하는 것으로 예측되었다.

This study was carried out to identify the factors affecting the distribution of suitable habitats for Geranium carolinianum, which was naturalized in South Korea, and to predict the changes of distribution in the future. We collected occurrence data of G. carolinianum at 68 sites in South Korea, and applied the MaxEnt model under climate change scenarios (SSP2-4.5, and SSP5-8.5). Precipitation seasonality (bio15), mean temperature of warmest quarter (bio10), and mean temperature of driest quarter (bio09) had high contribution for potential distribution of G. carolinianum. According to climate change scenarios, high suitable habitats of G. carolinianum occupied 6.43% of the land of South Korea in historical period (1981~2010), and 92.60% under SSP2-4.5, and 98.36% undr SSP5-8.5 in far future (2071~2100).

키워드

과제정보

본 연구는 농촌진흥청 공동연구사업(과제번호: PJ01480801, PJ01480804)의 지원에 의해 이루어진 것임.

참고문헌

  1. Aedo, C. 2000. The genus Geranium L. (Geraniaceae) in North America. I. Annual species. Anales del Jardin Botanico de Madrid 58: 39-82.
  2. Biber-Freudenberger, L., Ziemacki, J., Tonnang, H.E., and Borgemeister, C. 2016. Future risks of pest species under changing climatic conditions. Plos One 11(4): e0153237. https://doi.org/10.1371/journal.pone.0153237
  3. Bradley, B.A., Blumenthal, D.M., Wilcove, D.S., and Ziska, L.H. 2010b. Predicting plant invasions in an era of global change. Trends in Ecology & Evolution 25(5): 310-318. https://doi.org/10.1016/j.tree.2009.12.003
  4. Bradley, B.A., Wilcove, D.S., and Oppenheimer, M. 2010a. Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions 12(6): 1855-1872. https://doi.org/10.1007/s10530-009-9597-y
  5. Cho, K.H. and Lee S.H. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under cliamte change in the Korean peninsula. Ecology and Resilient Infrastructure 2: 206-215. (in Korean) https://doi.org/10.17820/eri.2015.2.3.206
  6. Cho, N.H., Kim, E.S., Lee, B., Lim, J.H., and Kang, S.K. 2020. Predicting the potential distribution of Pinus densiflora and analyzing the relationship with environmental variable using MaxEnt model. Korean Journal of Agricultural and Fores Meteorology 22(2): 47-56. (in Korean) https://doi.org/10.5532/KJAFM.2020.22.2.47
  7. Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A., and Schwartz, M. D. 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution 22(7): 357-365. https://doi.org/10.1016/j.tree.2007.04.003
  8. Cousens, R.D., and Mortimer, M. 1995. Dynamics of weed populations. Cambridge University Press, Cambridge.
  9. Davidson, A.M., Jennions, M., and Nicotra, A.B. 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecological Letters 14: 419-431. https://doi.org/10.1111/j.1461-0248.2011.01596.x
  10. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D., and Lautenbach, S. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  11. Elith, J., Graham, C.H., Anderson, R.P., et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  12. Elith, J., Kearney, M., and Phillips, S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
  13. Elith, J. and Leathwick, J.R. 2009. Species distribution models: Ecological explenation and prediction across space and time. Annual Review of Ecology Evolution & Systematics 40(1): 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  14. Fang, Y., Zhang, X., WEi, H., Wang, D., Chen, R., Wang, L., and Gu, W. 2021. Predicting the invasivie trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Science of The Total Environment 756: 143841. https://doi.org/10.1016/j.scitotenv.2020.143841
  15. Foden, W., Mace, G., Vie, J.-C., Angulo, A., Butchart, S., DeVantier, L., Dublin, H., Gutsche, A., Stuart, S., and Turak, E. 2008. Species susceptibility to climate change impacts. The 2008 Review of the IUCN Red List of Threatened Species. J.C. Vie, C. Hilton-Taylor and S.N. Stuart eds. Switzerland. IUCN Gland.
  16. Gama-Arachchige, N.S., Baskin, J.M., Geneve, R.L., and Baskin, C.C. 2011. Acquisition of physical dormancy and ontogeny of the micropyle-water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae). Annals of Botany 108: 51-64. https://doi.org/10.1093/aob/mcr103
  17. Gill, N.S., and Sangermano, F. 2016. Africanized honeybee habitat suitability: a comparison between models for southern Utah and southern California. Applied Geography 76: 14-21. https://doi.org/10.1016/j.apgeog.2016.09.002
  18. Hegland, S.J., Nielsen, A., Lazaro, A., Bjerknes, A.-L., and Totland, O. 2009. How does climate warming affect plant-pollinator interaction? Ecological Letters 12: 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
  19. Heikkinen, R.K., Luoto, M., Araujo, M.B., Virkkala, R., Thuiller, W. and Sykes, M. T. 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography 30: 751-777. https://doi.org/10.1177/0309133306071957
  20. Hejda, M., Pysek, P., and Jarosik, V. 2009. Impacat of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology 97: 393-403. https://doi.org/10.1111/j.1365-2745.2009.01480.x
  21. Hellmann, J.J., Byers, J.E., Bierwagen, B.G., and Dukes, J.S. 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22: 534-543. https://doi.org/10.1111/j.1523-1739.2008.00951.x
  22. Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 5: 773-785.
  23. Hors,t R.K. 2008. Westcott's Plant Disease Handbook, Springer Netherlands. p. 783.
  24. Hijiman, R.J., van Etten, J., Cheng, J., Mattiuzzi, M., Summer, M., Greenberg, J.A., and Ghosh, A. 2017. The raster Package: Geographic data analysis and modeling, version 2.6-7.
  25. Hoveka, L.N., Bezeng, B.S., Yessoufou, K., Boatwright, J.S., Van der Bank, M. 2016. Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany 102:33-38. https://doi.org/10.1016/j.sajb.2015.07.017
  26. Hu, J., and Jiang, Z. 2011. Climate change hastens the conservation urgency of an endangered ungulate. PLoS ONE 6(8): e22873. https://doi.org/10.1371/journal.pone.0022873
  27. Jeon, E.S. 1995. Recently naturalized Geranium carolinianum L. and Trifolium dubium Sibth. Bulletin of Korea Plant Conservation Society 34:22-23. (in Korean)
  28. Jo, W.S., Kim, H.Y., and Kim, B.J. 2017. Climate change alters diffusion of forest pest:A model study. Journal of the Korean Physical Society 70(1): 108-115. https://doi.org/10.3938/jkps.70.108
  29. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H., and Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distribution 19: 1366-1379. https://doi.org/10.1111/ddi.12096
  30. Lee, Y.H., Hong, S.H., Na, C.S., Sohn, S.I., Kim, M.H., Kim, C.S., Oh, Y.J. 2016. Predicting the suitable habitat of Amaranthus viridis based on climate change scenarios by MaxEnt. Korean Journal of Environmental Biology 34(4): 240-245. (in Korean) https://doi.org/10.11626/KJEB.2016.34.4.240
  31. Lee, Y.M., Park, S.H., Jung, S.Y., Oh, S.H., and Yang, J.C. 2011. Study on the current status of naturalized plants in South Korea. Korean Journal of Plant Taxonomy 41(1): 87-101. (in Korean) https://doi.org/10.11110/kjpt.2011.41.1.087
  32. Li, Y., Li, M., Li, C., and Liu, Z. 2020. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11(3).
  33. Liu, X., Zong, T., Li, Y., Zhou, X., and Bai, L. 2018. Effect of environmental factors on seed germination and early seedling emergence of Carolina geranium (Geranium carolinianum). Planta Daninha 36:e018181055. https://doi.org/10.1590/s0100-83582018360100136
  34. Morales, N.S., Fernandez, I.C., and Baca-Gonzalez, V. 2017. MaxEnt's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 5: e3093. https://doi.org/10.7717/peerj.3093
  35. Nam, H.K., Song, Y.J., Kwon, S.I., Eo, J., and Kim, M.H. 2018. Potential changes in the distribution of seven agricultural indicator plant species in response to climate change at agroecosystem in South Korea. Korean Journal of Ecology and Environment 51: 221-233. (in Korean) https://doi.org/10.11614/KSL.2018.51.3.221
  36. Ortega-Huerta M.A., and Peterson, A.T. 2008. Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad 79: 205-2016.
  37. Park, S.H. 2001. Colored illustrations of naturalized plants of Korea (Appendix). Ilchokak, Seoul, 178pp. (in Korean)
  38. Person, R.G., Raxworthy, C.J., Nakamura, M., and Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102-117. https://doi.org/10.1111/j.1365-2699.2006.01594.x
  39. Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  40. Pimental, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 50: 53-64. https://doi.org/10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
  41. Rockwell-Postel, M., Laginhas, B.B., and Bradley, B.A. 2020. Supporting proactive management in the context of climate change: prioritizing range-shifting invasive plants based on impact. Biological Invasions 22: 2371-2383. https://doi.org/10.1007/s10530-020-02261-1
  42. Sambaraja, K.R., Carroll, A.L. Zhu, J., Stahl, K., Moore, R.D., and Aukema, B.H. 2012. Climate change could alter the distribution of mountain pine beetle outbreaks in western Canada. Ecography 3: 211-223.
  43. Sharpe, S.M. and Boyd, N.S. 2020. Evaluation of sulfonylurea chemistries for strawberry crop safety and Carolina geranium (Geranium carolinianum) efficacy. Weed Technology 34: 214-219. https://doi.org/10.1017/wet.2019.100
  44. Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293. https://doi.org/10.1126/science.3287615
  45. Vila, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarosik, V., Maron, J.L., Pergl, J., Schaffner, U., Sun, Y., and Pysek, P. 2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702-708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
  46. Wilting, A., Cord, A., Hearn, A. J., Hesse, D., Mohamed, A., Traeholdt, C., Cheyne, S.M., Sunarto, S., Jayasilan, M.-A., Ross, J., Shapiro, A.C., Sebastian, A., Dech, S., Breitenmoser, C., Sanderson, J., Duckworth, J.W., and Hofer, H. 2010. Modelling the species distribution of flat-headed cats (Prionailurus planiceps), an endangered South-East Asian small felid. PLoS ONE 5: e9612. https://doi.org/10.1371/journal.pone.0009612