DOI QR코드

DOI QR Code

초음파 장치의 주파수 변화에 따른 Microcystis aeruginosa의 성장억제 평가

Evaluation of Growth Inhibition for Microcystis aeruginosa with Different Frequency of Ultrasonic Devices

  • 장소예 (한밭대학교 건설환경공학과) ;
  • 주진철 (한밭대학교 건설환경공학과) ;
  • 강은별 (한밭대학교 건설환경공학과) ;
  • 안채민 (한밭대학교 환경공학과) ;
  • 박정수 (한밭대학교 건설환경공학과) ;
  • 정무일 ((주)애드소닉) ;
  • 이동호 (한밭대학교 정보통신공학과)
  • Jang, So Ye (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Joo, Jin Chul (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Kang, Eun Byeol (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Ahn, Chae Min (Environmental Engineering, Hanbat National University) ;
  • Park, Jeongsu (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Jeong, Moo Il (Adsonic) ;
  • Lee, Dong Ho (Department of Information and Communication Engineering, Hanbat National University)
  • 투고 : 2021.09.07
  • 심사 : 2021.09.29
  • 발행 : 2021.09.30

초록

초음파의 고주파 (1.6 MHz), 저주파 (23 kHz) 조사를 통해 Microcystis aeruginosa (M. aeruginosa)의 성장 억제 효과 (growth inhibition effect)를 대용량 (7.2 L) 조류 시료를 활용해 실험실 규모 (lab-scale) 실험을 통해 검증하였다. 6시간 고주파 조사 후 chl-a 농도와 M. aeruginosa 개체수는 점진적인 감소 경향이 관측된 반면, 6시간 저주파 조사 후 chl-a 농도 및 M. aeruginosa 개체수가 고주파 대비 급격하게 감소하는 것을 확인하였다. 또한, 초음파 조사기간 보다 조사종료 이후의 일차분해상수(k)가 큰 것으로 확인되었으며, 이러한 결과는 기존 연구에 비해 비교적 낮은 단위부피당 초음파 에너지가 조류 세포막과 내부 기관에 미치는 영향이 지연되어 일정 시간 이후 점진적인 조류 성장 억제 효과가 관측되는 것으로 사료된다. 초음파 조사 후 chl-a 농도와 M. aeruginosa 개체수 변화, 성장률과 일차분해율을 종합적으로 비교한 결과, 저주파에서 조류 성장 억제 효과가 우수한 것으로 확인되었으며, 저주파에서 M. aeruginosa 세포막으로 에너지 투과 효율이 우수해 기낭 등 내부기관에 더 큰 손상을 유도하기 때문인 것으로 사료된다. SEM과 TEM image 관측을 통해서도 고주파 보다 저주파에서의 M. aeruginosa의 세포 표면 및 세포막의 손상이 명확하게 관측되었다. 마지막으로 초음파에 의한 M. aeruginosa의 기낭 파괴 및 세포막의 기능 손상을 통해 용출되는 독성물질인 microcystin-LR의 수중 유출은 검출한계 (0.1 ㎍ L-1) 미만으로 용출되어 수생태계에 미치는 유해성은 미미한 것으로 판단된다.

The growth inhibition effects of M. aeruginosa were verified using large volume (7.2 L) of algae samples and ultrasonication (high frequency of 1.6 MHz vs. low frequency of 23 kHz) in lab-scale experiment. The chlorophyll-a (chl-a) and cell number decreased gradually after 6 hr sonication with high frequency of 1.6 MHz whereas both decreased sharply after 6 hr sonication with low frequency of 23 kHz. Additionally, the first order degradation coefficient (k) values after sonication were greater than those during sonication. These results indicate that relatively low sonication energy per volume may affect the cell membrane and internal organs of M. aeruginosa in a slow and retarded manner and resulted in gradual decrease of cell numbers of M. aeruginosa. Based on the comparison of chl-a and cell number of M. aeruginosa after sonication, low frequency of 23 kHz is superior for growth inhibition of M. aeruginosa, since low frequency of 23 kHz easily penetrates the cell membrane and ruptures the internal organs including gas vesicles. As is evident in SEM and TEM images, ruptured cell membranes were clearly observed for low frequency of 23 kHz. Finally, the microcystin-LR in water is not detected and considered to be harmless in aquaculture systems.

키워드

과제정보

본 연구는 중소벤처기업부의 기술개발사업[G21S302588801]과 과학기술정보통신부의 ICT 기술개발사업(G21S302588801)의 지원에 의한 연구임.

참고문헌

  1. Ame, M.V., Galanti, L.N., Menone, M.L., Gerpe, M.S., Moreno, V.J. and Wunderlin, D.A. 2010. Microcystin-LR,-RR,-YR and-LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9(1): 66-73. https://doi.org/10.1016/j.hal.2009.08.001
  2. Byeon, K.D., Kim, G.Y., Lee, I.J., Lee, S., Park, J.R., Hwang, T.M. and Joo, J.C. 2016. Investigation and Evaluation of Algae Removal Technologies Applied in Domestic Rivers and Lakes. Journal of Korean Society Environmental Engineers 38(7): 387-394. https://doi.org/10.4491/KSEE.2016.38.7.387
  3. Carmichael, W.W. 1992. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of applied bacteriology 72(6): 445-459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  4. Chen, G., Ding, X. and Zhou, W. 2020. Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics sonochemistry 63: 104900. https://doi.org/10.1016/j.ultsonch.2019.104900
  5. Codd, G.A., Morrison, L.F. and Metcalf, J.S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and applied pharmacology 203(3): 264-272. https://doi.org/10.1016/j.taap.2004.02.016
  6. Dehghani, M. H. 2016. Removal of cyanobacterial and algal cells from water by ultrasonic waves-A review. Journal of molecular liquids 222: 1109-1114. https://doi.org/10.1016/j.molliq.2016.08.010
  7. Dittmann, E. and Wiegand, C. 2006. Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Molecular nutrition & food research 50(1): 7-17. https://doi.org/10.1002/mnfr.200500162
  8. Fan, G., Zhang, Z., Luo, J., Wan, X. and Liu, C., 2013. Response Surface Design for the Optimization of the Removal of Chlorella pyrenoidosa Low Frequency Ultrasonic Irradiation. Asian Journal of Chemistry 25: 202-208. https://doi.org/10.14233/ajchem.2013.12891
  9. Griffith, A.W. and Gobler, C.J. 2020. Harmful algal blooms: a climate change co-stressor in marine and freshwater ecosystems. Harmful Algae 91: 101590. https://doi.org/10.1016/j.hal.2019.03.008
  10. Hao, H., Wu, M., Chen, Y., Tang, J. and Wu, Q. 2004. Cavitation mechanism in cyanobacterial growth inhibition by ultrasonic irradiation. Colloids and Surfaces B: Biointerfaces 33: 151-156. https://doi.org/10.1016/j.colsurfb.2003.09.003
  11. Huang, Y.R., Li, L., Wei, X.M., Li, H.Z., Zeng, J.Y. and Kuang, R. 2020. An investigation of mechanisms for the enhanced coagulation removal of Microcystis aeruginosa by low-frequency ultrasound under different ultrasound energy densities. Ultrasonics Sonochemistry 69: 105278. https://doi.org/10.1016/j.ultsonch.2020.105278
  12. Hudder, A., Song, W., O'Shea, K.E. and Walsh, P.J. 2007. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicology and applied pharmacology 220(3): 357-364. https://doi.org/10.1016/j.taap.2007.02.004
  13. Jachlewski, S., Botes, M. and Cloete, T.E. 2013. The effect of ultrasound at 256 KHz on Microcystis aeruginosa, with and without gas vacuoles. Water SA 39(1): 171-172.
  14. Joo, J.C., Kim, G.Y., Lee, M.J., Ahn, C.H., Lee, S., Park, J.R. and Kim, J.K. 2020. Growth Inhibition of Microcystis aeruginosa Using TiO2-Embedded Expanded Polystyrene Balls. Journal of nanoscience and nanotechnology 20(9): 5775-5779. https://doi.org/10.1166/jnn.2020.17637
  15. Kim, G.Y., Joo, J.C., Lee, M.J., Park, J.R., Ahn, C.H. and Lee, S. 2019. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO2-embedded Expanded Polystyrene (TiEPS) Balls: Lab-scale Indoor/Outdoor Experiments. Journal of Korean Society Environmental Engineers 41(11): 637-646. (in Korean) https://doi.org/10.4491/KSEE.2019.41.11.637
  16. Kong, Y., Peng, Y., Zhang, Z., Zhang, M. and Zhou, Y., Duan, Z. 2019. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter. Ultrasonics sonochemistry 56: 447-457. https://doi.org/10.1016/j.ultsonch.2019.04.017
  17. Lee, M.J., Joo, J.C., Kim, G.Y., Park, J.R., Ahn, C.H. and Lee, S. 2019. Evaluation on Growth Inhibition Effect of Harmful Blue Green Algae Using TiO2-embedded Expanded Polystyrene (TiEPS) Balls: River/Reservoir Mesocosms. Journal of Korean Society Environmental Engineers 41(11): 647-656. (in Korean) https://doi.org/10.4491/KSEE.2019.41.11.647
  18. Lee, Y., Kim, I.H. and Moon, H.B. 2020. Perception Trend Analysis on Harmful Algae Bloom from a Large-scale Text Big Data. The Korean Association of Political Science & Communication 23.1: 201-222. (in Korean)
  19. Lee, H.K., Kim, J.H., Yoo, S.A., Ahn, T.S., Kim, C.K. and Lee, D.H. 2003. Primer Evaluation for the Detection of Toxigenic Microcystis by PCR. Korean Journal of Microbiology 39(3): 166-174. 656. (in Korean)
  20. Lee, H.J., Park, H.K., Heo, J., Lee, H.J. and Hong, D.G. 2018. Colonial Cyanobacteria, Microcystis Cell Density Variations using Ultrasonic Treatment. Journal of Korean Society on Water Environment 34: 210-215. https://doi.org/10.15681/KSWE.2018.34.2.210
  21. Li, P., Song, Y. and Yu, S. 2014. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms. water research 62: 241-248. https://doi.org/10.1016/j.watres.2014.05.052
  22. Ma, B., Chen, Y., Hao, H., Wu, M., Wang, B., Lv, H. and Zhang, G. 2005. Influence of ultrasonic field on microcystins produced by bloom-forming algae. Colloids and Surfaces B: Biointerfaces 41(2-3): 197-201. https://doi.org/10.1016/j.colsurfb.2004.12.010
  23. Ministry of Environment. 2016. Algal bloom, What is the algal bloom?
  24. NIER. 2007. A study on the production and behavior of cyanobacterial toxin.
  25. Paerl, H.W. and Otten, T.G. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial ecology 65(4): 995-1010. https://doi.org/10.1007/s00248-012-0159-y
  26. Park, J., Church, J., Son, Y., Kim, K.T. and Lee, W.H. 2017. Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics sonochemistry 38: 326-334. https://doi.org/10.1016/j.ultsonch.2017.03.003
  27. Park, Y.M., Kown, O.C., Park, J.W., Chung, G.Y., Lee, J.E. and Seo, E.W., 2013. Effects of Low Powered Ultrasonic Wave Exposure on Microcystis sp. (Cyanobacteria). Korean Journal of Environmental Biology 31(2): 113-120. (in Korean) https://doi.org/10.11626/KJEB.2013.31.2.113
  28. Peng, Y., Zhang, Z., Kong, Y., Li, Y., Zhou, Y., Shi, X. and Shi, X. 2020. Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter. Ultrasonics sonochemistry 63: 104909. https://doi.org/10.1016/j.ultsonch.2019.104909
  29. Purcell, D., Parsons, S.A. and Jefferson, B., 2013. The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.. Environmental technology 34. 17: 2477-2490. https://doi.org/10.1080/09593330.2013.773355
  30. Rajasekhar, P., Fan, L., Thang, N. and Roddick, F.A. 2012. A review of the use of sonication to control cyanobacterial blooms. Water Research 46: 4319-4329. https://doi.org/10.1016/j.watres.2012.05.054
  31. Rodriguez-Molares, A., Dickson, S., Hobson, P., Haward, C., Zander, A., Brunch, M. 2014. Quantification of the ultrasound induced sedimentation of Microcystis aeruginosa. Ultrasonic Sonochemistry 21: 1299-1304. https://doi.org/10.1016/j.ultsonch.2014.01.027
  32. Sim, J.H., Seo, H.J. and Kwon, B.D. 2006. Study on effect of algae removal using ultrasonic waves in double cisterns. Journal of Korean Society Environmental Engineers 28: 1310-1315. (in Korean)
  33. Sivonen, K. 1999. Cyanobacterial toxins. Toxic Cyanobacteria in Water, A Guide to Their Health Consequences, Monitoring and Management.
  34. Song, W. and O'Shea, K.E. 2007. Ultrasonically induced degradation of 2-methylisoborneol and geosmin. Water research 41(12): 2672-2678. https://doi.org/10.1016/j.watres.2007.02.041
  35. Song, W., Teshiba, T., Rein, K. and O'Shea, K.E. 2005. Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environmental science & technology 39(16): 6300-6305. https://doi.org/10.1021/es048350z
  36. Srisuksomwong, P., Peerapornpisal, Y., Nomura, N. and Whangchai, N. 2012. Comparative ultrasonic irradiation efficiency of Microcystis aeruginosa and M. wesenbergii from surface bloom and re-flotation behavior. Chiang Mai J. Sci 39(4): 731-735.
  37. Wu, X., Joyce, E.M. and Mason, T.J. 2012. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. Water Research 46: 2851-2858. https://doi.org/10.1016/j.watres.2012.02.019
  38. Yamamoto, K., King, P.M., Wu, X., Mason, T.J. and Joyce, E.M. 2015. Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrasonics Sonochemistry 24: 165-171. https://doi.org/10.1016/j.ultsonch.2014.11.002
  39. Zhang, G., Zhang, P., Wang, B. and Liu, H., 2006. Ultrasonic frequency effects on the removal of Microcystis aeruginosa. Ultrasonics Sonochemistry 13: 446-450. https://doi.org/10.1016/j.ultsonch.2005.09.012