DOI QR코드

DOI QR Code

A Study on the Anti-Pollution Effect of Kombucha Fraction through AhR Expression

AhR 발현을 통한 콤부차 분획물의 안티폴루션 효과 연구

  • Kang, Eun-Bin (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Hyun, Jin-A (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Kwon, Hyun-Ji (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Beom, Seok-Hyun (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Han, Dong-Geun (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Park, Ha-Eun (R&D Center, HONEST.Co.,Ltd.) ;
  • Kim, Hyun-Jeong (R&D Center, HONEST.Co.,Ltd.) ;
  • Kwak, Ki-Sung (R&D Center, HONEST.Co.,Ltd.) ;
  • An, Bong-Jeon (Department of Cosmeceutical Science, Daegu Hanny University)
  • 강은빈 (대구한의대학교 화장품약리학과) ;
  • 현진아 (대구한의대학교 화장품약리학과) ;
  • 권현지 (대구한의대학교 화장품약리학과) ;
  • 범석현 (대구한의대학교 화장품약리학과) ;
  • 한동근 (대구한의대학교 화장품약리학과) ;
  • 박하은 ((주)허니스트) ;
  • 김현정 ((주)허니스트) ;
  • 곽기성 ((주)허니스트) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2021.05.24
  • Accepted : 2021.07.21
  • Published : 2021.09.30

Abstract

In this study, Kombucha, a fermented drink by adding beneficial bacteria to green tea or black tea with sugar, was classified using column chromatography, and the presence or absence of quercetin glycoside, a type of flavonoids, was confirmed through TLC. In addition, the anti-pollution effect of protecting and improving the skin from pollution was confirmed using the fraction. Keratinocytes were treated with K-QG to confirm the cell viability, showing a survival rate of 90% or more up to a concentration of 100 ㎍/mL, and the cell viability by benzo[e]pyrene and fine dust stimulation to see the anti-pollution effect was measured. At 100 ㎍/mL, the improvement rates were about 68.79% and 50.68%, respectively. In addition, as a result of confirming the expression of AhR activated by benzo[a]pyrene through Western blot, it showed an inhibition rate of about 31.08% at 100 ㎍/mL compared to the control group. Through the results of this study, K-QG is thought to be valuable as an anti-pollution functional material, protecting and improving skin irritated from benzopyrene and fine dust.

본 연구에서는 설탕을 넣은 녹차나 홍차에 유익균을 첨가해 발효시킨 음료인 콤부차를 컬럼 크로마토그래피를 이용해 분획한 후, TLC를 통해 플라보노이드류인 퀘르세틴 글리코사이드(quercetin glycoside)의 유효성분 유무를 확인하고 그 분획물을 이용하여 공해로부터 피부를 보호 및 개선하는 안티폴루션 효과를 확인하였다. 인간 각질형성세포에 Kombucha-quercetin glycoside (K-QG)를 처리하여 세포 생존율을 확인한 결과, 100 ㎍/mL 농도까지 90% 이상의 생존율을 보였으며, 안티폴루션 효과를 보기 위해 benzo[e]pyrene과 미세먼지 자극에 의한 세포 생존율을 측정한 결과, 100 ㎍/mL에서 각각 68.79%, 50.68%의 개선율을 보였다. 또한, benzo[a]pyrene에 의해 활성화되는 aryl hydrocarbon receptor (AhR) 발현을 웨스턴 블롯을 통해 확인한 결과, 대조군에 대비하여 100 ㎍/mL에서 31.08%의 억제율을 보였다. 본 연구의 결과를 통해 K-QG는 벤조피렌과 미세먼지로부터 자극받은 피부를 보호, 개선해주며 안티폴루션 기능성 소재로써 가치가 있는 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부의 위기지역중소기업 Scale-up R&D사업(과제번호: GB2020-64)의 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. C. Hwang, Particulate matter management policy of Seoul: Achievements and limitations, The Korea Asso. Policy Stud., 27(2), 27 (2018).
  2. World Health Organization, Air Quality Guidelines, 2nd Ed., World Health Organization Regional Office for Europe, Copenhagen, Denmark (2000).
  3. E. J. An and J. H. Kim, The survival rate of cultured epithelial keratinocyte cell and dermal fibroblast cell treated with particulate matter (PM10), J. Kor. Soc. Cosmetol., 25(4), 822 (2019).
  4. J. K. Choi, I. S. Choi, K. K. Cho, and S. H. Lee, Harmfulness of particulate matter in disease progression, J. Life Sci., 30(2), 191 (2020). https://doi.org/10.5352/JLS.2020.30.2.191
  5. K. Higashisaka, M. Fujimura, M. Taira, T. Yoshida, S. Tsunoda, T. Baba, N. Yamaguchi, H. Nabeshi, T. Yoshikawa, M. Nasu, Y. Yoshioka, and Y. Tsutsumi, A sian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production, J. Immunol Res, 2014, (2014).
  6. C. Esser, I. Bargen, H. Weighardt, T. Haarmann- Stemmann, and J. Krutmann, Functions of the aryl hydrocarbon receptor in the skin, Semin Immunopathol, 35(6), 677 (2013). https://doi.org/10.1007/s00281-013-0394-4
  7. F. Masutaka, T. Masakazu, N. Takeshi, and U. Hiroshi, Role of AhR/ARNT system in skin homeostasis, Arch Dermatol Res., 306(9), 769 (2014). https://doi.org/10.1007/s00403-014-1481-7
  8. M. K. Kim, H. J. Woo, D. H. Park, and E. S. Jung, Air pollution and skin health: Recent studies, J. Skin Barrier Res., 20(2), 15 (2018).
  9. C. Gotz, R. Pfeiffer, J. Tigges, K. Ruwiedel, U. Hubenthal, H. F. Merk, J. Krutmann, R. J. Edwards, J. Abel, C. Pease, C. Goebel, N. Hewitt, and E. Fritsche, Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: Phase II enzymes, Exp Dermatology, 21(5), 364 (2012). https://doi.org/10.1111/j.1600-0625.2012.01478.x
  10. R. V. Malbasa, E. S. Loncar, and L. A. Kolarov, TLC analysis of some phenolic compounds in Kombucha beverage, Acta Periodica Technologica, 35, 199 (2004). https://doi.org/10.2298/APT0435199M
  11. J. Y. Kim, H. J. Shin, H. J. Lukas. Kim, H. Park, P. K. Kim, S. Park, and S. H. Kim, The compositional and functional properties of Kombucha: A literature review, Food Eng, Prog., 24(1), 1 (2020). https://doi.org/10.13050/foodengprog.2020.24.1.1
  12. Danielle L. St-Pierre, Ph. D. Dissertation, Maine Univ., Marine, USA (2019).
  13. R. Vijayaraghavan, M. Singh, P. V. Rao, R. Bhattacharya, P. Kumar, K. Sugendran, O. Kumar, S. C. Pant, and R. Singh, Subacute (90 days) oral toxicity studies of Kombucha tea, Biomed. Environ sci., 13(4), 293 (2000).
  14. S. C. Chu, and C. S. Chen, Effects of origins and fermentation time on the antioxidant activities of Kombucha, Food chem., 98(3), 502 (2006). https://doi.org/10.1016/j.foodchem.2005.05.080
  15. J. Carmichael, W. G. Degraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing, Cancer Res., 47(4), 936 (1987).