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ABSTRACT: The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is

135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and

12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions,

including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide poly-

morphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloro-

plast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya

chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the

phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific

variations and species delimitation issues pertaining to the Zoysia species.
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Zoysia macrostachya Steud. is a perennial plant species,

majorly distributed in Korea, Japan, and east costal of China

(Soreng et al., 2015; Park et al., 2020a). Zoysia macrostachya

is a warm season grass having C-4 photosynthetic system

(Moser et al., 2004), which can grow well under the high

temperature. Till now, no commercial cultivars of Z.

macrostachya has been developed (Loch et al., 2017; Wang et

al., 2020), which is different from Zoysia japonica (Chai and

Kim, 2000; Ge et al., 2006; Sun et al., 2010) and Zoysia

matrella (Bae et al., 2008; Choi et al., 2017). Because Z.

macrostachva has more resistance to salt than Z. japonica and

Z. matrella (Loch et al., 2017), it is highly valuable as a

breeding copy for land reclamation or coastal areas. Due to

recently sequenced chloroplast genomes of Zoysia (Tanaka et

al., 2016; Lee and Park, 2021a; Lee and Park, 2021b),

intraspecific variations which have been utilized for developing

markers (Li et al., 2020) and understanding phylogenetic

relationship (Park et al., 2020b; Park et al., 2021a) can be

investigated along with Zoysia species. Here, we completed

the complete chloroplast genome of Z. macrostachya to

understand intraspecific variations as well as species boundary.

Materials and Methods

Plant material

We isolated the Z. macrostachya in the Subtropical

Horticulture Research Institute, Jeju city, Korea (36.83914N,

127.17096E) for conserving natural isolate in Jejudo island in

Korea. A voucher and isolated DNA was deposited in the

InfoBoss Cyber Herbarium (IN, the voucher number IB-01097).
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DNA extraction and mitochondrial genome

determination

Its total DNA was extracted from fresh leaf by using a

DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Genome

sequencing was performed using NovaSeq6000 at Macrogen

Inc., Korea, and de novo assembly was done by Velvet v1.2.10

(Zerbino and Birney, 2008) and GapCloser v1.12 (Zhao et al.,

2011). Assembled sequences were modified and confirmed by

BWA v0.7.17 (Li, 2013) and SAMtools v1.9 (Li et al., 2009).

Circular form was confirmed by connecting both ends using

GapCloser v1.12. All analyses were conducted in the Genome

Information System (http://geis.infoboss.co.kr/) used in the

previous studies (Kim et al., 2021a, 2021b; Park et al., 2019a,

2019d, 2021f). 

Genome annotation was conducted based on the Z.

macrostachya chloroplast reported previously (NC_042189)

(Cheon et al., 2021) with Geneious Prime 2020.2.4 (Biomatters

Ltd, Auckland, New Zealand). A circular map of Z.

macrostachya chloroplast genome was drawn using OGDRAW

v1.31 (Greiner et al., 2019).

Identification of intraspecific variations

Single nucleotide polymorphisms (SNPs) and insertions and

deletions (INDELs) were identified from the pairwise sequence

alignment of the two Z. macrostachya chloroplast genomes

conducted by MAFFT 7.450 (Katoh and Standley, 2013) with

‘Find variations/SNPs’ implemented in Geneious Prime

2020.2.4 (Biomatters Ltd., Auckland, New Zealand), which has

been used in the previous studies investigating intraspecific

variations on organelle genomes (Park et al., 2020c, 2021b,

2021e). INDEL region was defined as the continuous INDELs. 

Phylogenetic analysis

Maximum-Likelihood (ML), Neighbor-Joining (NJ), and

Bayesian inference (BI) phylogenetic trees were constructed

based on the multiple sequence alignment of ten Zoysia

chloroplast genomes by MAFFT v7.450 (Katoh and Standley,

2013). The NJ and ML tree were reconstructed in MEGA X

with 10,000 and 1,000 bootstrap repeats, respectively (Kumar

et al., 2018). In the ML analysis, a heuristic search was used

with nearest-neighbor interchange branch swapping, TVM +

F + R4 model, and uniform rates among sites. All other options

used the default settings. The posterior probability of each node

was estimated by BI using MrBayes v3.2.6 (Ronquist et al.,

2012) plug-in implemented in Geneious Prime 2020.2.4

(Biomatters Ltd., Auckland, New Zealand). The HKY85 model

with gamma rates was used as a molecular model. A Markov

chain Monte Carlo algorithm was employed for 1,100,000

generations, sampling trees every 200 generations, with four

chains running simultaneously. Trees from the first 100,000

generations were discarded as burn-in.

Data Availability Statement

Chloroplast genome sequence can be accessed via

accession number MZ233426 in GenBank of NCBI at https:/

/www.ncbi.nlm.nih.gov. The associated BioProject, SRA, and

Bio-Sample numbers are PRJNA730583, SAMN19236164,

and SRR14572437, respectively.

Results and Discussion

The chloroplast genome of Z. macrostachya (GenBank

accession no. MZ233426) is 135,902 bp (GC ratio, 38.4%) and

has four subregions: 81,546 bp of large single copy (LSC; 36.3%)

and 12,586 bp of small single copy (SSC; 32.7%) regions are

separated by 20,885 bp of inverted repeat (IR; 44.1%) (Fig. 1).

Lengths of the complete Zoysia chloroplast genomes displayed

135,810 bp to 135,904 bp, similar to those of Tritichum, Oryza,

and Avena genera (Ogihara et al., 2000; Wambugu et al., 2015;

Liu et al., 2020) and displayed the short length among available

Poaceae chloroplast genomes (from 129,905 bp [Rytidosperma

semiannulare (Labill.) Connor & Edgar; NC_036701] to 162,086

bp [Paspalum ionanthum Chase; NC_039464] (Burke et al.,

2018)). It contains 130 genes (83 protein-coding genes, eight

rRNAs, 39 tRNAs, and one pseudogene); 19 genes (seven

protein-coding genes, four rRNAs, and eight tRNAs) are

duplicated in inverted repeat regions (Fig. 1). One pseudogene is

a partial ndhF, same to that of the previously reported chloroplast

genome of Z. macrostachya (Cheon et al., 2021).

Thirty-nine SNPs and 11 INDEL regions (18 bp in total)

were identified from pairwise alignment of two Z.

macrostachya chloroplast genomes. The longest INDEL region

is 6 bp long and two INDEL regions are 2-bp. Number of

SNPs identified in Z. macrostachya is greater in number than

that of Z. matrella (28 SNPs) (Lee and Park, 2021a); while

number of the INDEL regions is smaller. In addition, both are

smaller than those of Z. japonica (68 SNPs and 24 INDEL

regions) (Lee and Park, 2021b), indicating that intraspecific

variations of Z. macrostachya is the smallest among Zoysia

species. These numbers are also smaller than those identified

between the samples isolated in Korea: e.g., Campanula

takesimana (Park et al., 2021a), Pseudostellaria palibiniana

(Kim et al., 2019), Daphne genkwa (Yoo et al., 2021),

Abeliophyllum distichum (Min et al., 2019; Park et al., 2019b,

2019c, 2021d), Chenopodium album (Park et al., 2021c), and

Pyrus ussuriensis (Cho et al., 2019).
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Two and one non-synonymous SNPs were found in psaB

and psbK, respectively; while two, one, and one synonymous

SNPs were identified in rpoC2, infA, and ccsA, respectively.

In addition, one SNP was in trnQ, displaying 20.51% SNPs

are in genic region. Number of genes containing SNPs in Z.

macrostachya is smaller than that of Z. japonica, exhibiting

different genes: rpoB, rpoC2, atpB, and ndhA contain one

synonymous SNP each, petA covers three synonymous SNPs,

rpoC1 and atpF have one non-synonymous SNP each (Lee

and Park, 2021b). This distribution of intraspecific SNPs in

the genic region can be developed as intraspecific molecular

markers with additional experiments of validation. In addition,

ycf1 which exhibits high nucleotide diversity in various plant

species (Jiang et al., 2017; Park and Oh, 2020; Loeuille et al.,

2021) was not found in this chloroplast genome, congruent to

the other Zoysia chloroplast genomes (Tanaka et al., 2016;

Cheon et al., 2021; Lee and Park, 2021a, 2021b).

ML and BI phylogenetic trees show that our Z. macrostachya

was clustered with previous Z. macrostachya with high supportive

values of all trees (Fig. 1). Interestingly, the branch length in Z.

macrostachya clade is similar to the clade containing Z. japonica

and Z. sinica (Fig. 2), suggesting the possible scenario that Z.

sinica can be considered as Z. japonica together with similar

morphological features of the two species (Yu et al., 1974). In

addition, phylogenetic position of the Z. macrostachya clade was

not supported by the BI tree (Fig. 2) and topology of Z.

macrostachya and Z. macrantha presented in Cheon et al. (2021)

was not also congruent with the three trees (Fig. 2), suggesting

Fig. 1. Circular map of chloroplast genome of Zoysia macrostachya isolated in Korea. Gene shown outside are transcribed clockwise, and

inside the circle are transcribed counter clockwise. Genes are color-coded to distinguish different functional groups. The dark grey and the

light grey plot in the inner circle correspond to the GC content and AT content, respectively. 
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additional chloroplast genomes of neighbor species of Z.

macrostachya are required to clarify the phylogenetic relationship.

Taken together, our chloroplast genome provides the insight of

intraspecific variations and species delimitation of Zoysia species.
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