DOI QR코드

DOI QR Code

CMG를 활용한 드론의 비선형 자세 제어 기법

Nonlinear Attitude Control of Drones Using Control Moment Gyros

  • Jang, Seok-ho (Department of Aerospace Engineering Chosun University) ;
  • Leeghim, Henzeh (Department of Aerospace Engineering Chosun University)
  • 투고 : 2021.05.17
  • 심사 : 2021.09.01
  • 발행 : 2021.10.01

초록

쿼드로터는 다른 비행체에 비해 작고 가벼워서 바람과 같은 외란에 민감하다는 단점이 있다. 이 단점을 해결하기 위해 외란에 강인한 제어기법을 이용하는 연구가 많이 이루어져 왔다. 본 논문에서는 외란을 해결하기 위해 적은 힘으로 큰 토크를 발생시킬 수 있는 CMGs (Control Moment Gyros)를 활용하였다. 쿼드로터의 자세 제어를 위해 2개의 CMGs를 활용하였고, 4개의 로터와 2개의 CMGs를 구동하기 위한 시스템을 구성하였다. 구성한 시스템의 제어 성능을 확인하기 위해 외란이 있는 환경에서 자세 제어에 대한 시뮬레이션을 진행하였다.

Quadrotors relatively smaller and lighter than other aircraft have a disadvantage of being sensitive to the external disturbances. In order to solve this disadvantage, many studies have been conducted by various control techniques robust to disturbances. In this paper, CMGs (Control Moment Gyros) introducing relatively large control torque with an identical amount of electric powers are applied to cancel the external disturbances. Two CMGs are considered to control the attitude of quadrotors so that a multi-copter installed with two CMGs and four rotors are introduced for this work. Finally, to verify the control performance of the proposed system by the CMGs, a numerical simulation conducted in the given harsh environment.

키워드

과제정보

본 연구는 중소벤처기업부에서 지원하는 2020년도 산학연Collabo R&D 사업(No.S2905461)의 지원금으로 수행하였습니다.

참고문헌

  1. Raffo, G. V., Ortega, M. G. and Rubio, F. R., "An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter," Automatica, Vol. 46, No. 1, January 2010, pp. 29~39. https://doi.org/10.1016/j.automatica.2009.10.018
  2. Islam, S., Liu, P. X. and El Saddik, A., "Robust control of four-rotor unmanned aerial vehicle with disturbance uncertainty," IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, October 2014, pp. 1563~1571. https://doi.org/10.1109/TIE.2014.2365441
  3. Shtessel, Y., Edwards, C., Fridman, L. and Levant, A., Sliding mode control and observation, New York: Springer, New York, 2014.
  4. Bartolini, G., Ferrara, A. and Usai, E., "Chattering avoidance by second-order sliding mode control," IEEE Transactions on automatic control, Vol. 43, No. 2, February 1998, pp. 241~246. https://doi.org/10.1109/9.661074
  5. Yu, X., Man, Z. and Wu, B., "Design of fuzzy sliding-mode control systems," Fuzzy sets and systems, Vol. 95, No. 3, May 1998, pp. 295~306. https://doi.org/10.1016/S0165-0114(96)00278-3
  6. Schaub, H., Vadali, S. R. and Junkins, J. L., "Feedback control law for variable speed control moment gyros," Journal of the Astronautical Sciences, Vol. 46, No. 3, July 1998, pp. 307~328. https://doi.org/10.1007/BF03546239
  7. Leeghim, H., "Optimal steering laws for control moment gyros," Korea Advanced Institute of Science and Technology, Doctoral Dissertation, 2007.
  8. Yang, Y. Y., "VTOL Development for obstacle awareness and collision avoidance," Domestic Master's Thesis Graduate School Chosun University, 2018.
  9. Luukkonen, T., "Modelling and control of quadcopter," Independent research project in applied mathematics, Espoo, Vol. 22, August 2011.
  10. Fessi, R., Bouallegue, S. and Haggege, J., "Terminal sliding mode controller design for a quadrotor unmanned aerial vehicle," Applications of Sliding Mode Control in Science and Engineering, April 2017, pp. 81~98
  11. Yu, X. and Zhihong, M., "Fast terminal sliding-mode control design for nonlinear dynamical systems," IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications, Vol. 49, No. 2, February 2002, pp. 261~264. https://doi.org/10.1109/81.983876
  12. Xiong, J. J. and Zheng, E. H., "Position and attitude tracking control for a quadrotor UAV," ISA transactions, Vol. 53, No. 3, May 2014, pp. 725~731. https://doi.org/10.1016/j.isatra.2014.01.004
  13. Kgim, Y. O. and Leeghim, H., "Drone control using Control Moment Gyro," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2016, pp. 917~919.