Acknowledgement
This study was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean government(MSIT) (No. 2021R1A2C2006631).
References
- ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), Michigan, U.S.A.
- Amiri, G.G. and Rajabi, E. (2018), "Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures", Comput. Concrete, 21(1), 55-66. https://doi.org/10.12989/cac.2018.21.1.055.
- ASCE-41 (2013), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, U.S.A.
- ASCE/SEI-7 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, U.S.A.
- Bojorquez, E. and Ruiz-Garcia, J. (2013), "Residual drift demands in moment-resisting steel frames subjected to narrow-band earthquake ground motions", Earthq. Eng. Struct Dyn., 42(11), 1583-1598. https://doi.org/10.1002/eqe.2288.
- Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 135(4), 414-424. http://dx.doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414).
- DesRoches, R., Comerio, M., Eberhard, M., Mooney, W., and Rix, G.J. (2011), "Overview of the 2010 Haiti earthquake", Earthq. Spectra., 27(1_suppl1), 1-21. https://doi.org/10.1193/1.3630129.
- Di Trapani, F. and Malavisi, M. (2019), "Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach", Bull. Earthq. Eng., 17(1), 211-235. https://doi.org/10.1007/s10518-018-0445-2.
- Dong, Y. and Frangopol, D.M. (2015), "Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties", Eng. Struct., 83, 198-208. https://doi.org/10.1016/j.engstruct.2014.10.050.
- Eldin, M., Assefa, J. and Kim, J. (2020a), "Seismic retrofit of framed buildings using self-centering PC frames", J. Struct. Eng., 146(10), 04020208. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002786.
- Eldin, M., Naeem, A. and Kim, J. (2020b), "Seismic retrofit of a structure using self-centring precast concrete frames with enlarged beam ends", Mag. Concrete Res., 72(22), 1155-1170, https://doi.org/10.1680/jmacr.19.00012.
- Eldin, M.N., Kim, J. and Kim, J.K. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington DC, U.S.A.
- Gaetani d'Aragona, M., Polese, M., Elwood, K.J., Baradaran Shoraka, M. and Prota, A. (2017), "Aftershock collapse fragility curves for non-ductile RC buildings", Scenario-Based Assessment, 46(13), 2083-2102. https://doi.org/10.1002/eqe.2894.
- Goda, K., Pomonis, A., Chian, S.C., Offord, M., Saito, K., Sammonds, P. and Macabuag, J. (2013), "Ground motion characteristics and shaking damage of the 11th March 2011 Mw 9. 0 Great East Japan earthquake", Bull Earthq. Eng., 11(1), 141-170. https://doi.org/10.1007/s10518-012-9371-x.
- Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/ijhrb.2019.8.3.221.
- Kostinakis, K. and Morfidis, K. (2017), "The impact of successive earthquakes on the seismic damage of multistory 3D R/C buildings", Earthq. Struct., 12(1), 1-12. https://doi.org/10.12989/eas.2017.12.1.001.
- Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Construct. Steel Res., 136, 128-139. http://dx.doi.org/10.1016/j.jcsr.2017.05.005
- Moss, R.E.S., Thompson, E.M., Scott Kieffer, D., Tiwari, B., Hashash, Y.M.A., Acharya, I. and Uprety, S. (2015), "Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake, and aftershocks", Seismol. Res. Lett., 86(6), 1514-1523. https://doi.org/10.1785/0220150158.
- Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable system", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
- Noureldin, M., Ali, A., Nasab, M. and Kim, J. (2021), "Optimum distribution of seismic energy dissipation devices using neural network and fuzzy inference system", Comput. Aid. Civil Infrastruct., 1-16. https://doi.org/10.1111/mice.1267.
- Noureldin, M., Dereje, A.J. and Kim, J.K. (2020), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
- Park, S.W., Park, H.S., Oh, B.K. and Choi, S.W. (2018), "Fragility assessment model of building structures using characteristics of artificial aftershock motions", Comput. Aid. Civil Infrastruct. Eng., 33(8), 691-708. https://doi.org/10.1111/mice.12369.
- PEER, NGA Database (2019), The Pacific Earthquake Engineering Research Center, Pacific Earthq. Eng. Res. Center (PEER), Berkeley, CA, U.S.A. http://ngawest2.berkeley.edu
- Penna, A., Morandi, P., Rota, M., Manzini, C.F., da Porto, F. and Magenes, G. (2014), "Performance of masonry buildings during the Emilia 2012 earthquake", Bull. Earthq. Eng., 12(5), 2255-2273. https://doi.org/10.1007/s10518-013-9496-6.
- Ruiz-Garcia, J. and Aguilar, J.D. (2015), "Aftershock seismic assessment taking into account post-mainshock residual drifts", Earthq. Eng. Struct. Dyn., 44(9), 1391-1407. https://doi.org/10.1002/eqe.2523.
- Ruiz-Garcia, J., Marin, M.V. and Teran-Gilmore, A. (2014), "Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites", Soil Dyn. Earthq. Eng., 63, 56-68. https://doi.org/10.1016/j.soildyn.2014.03.008.
- SAP2000, Ver. 18 (2018), "Analysis reference manual", Comput. Struct., Berkeley, U.S.A.
- Shcherbakov, R., Nguyen, M. and Quigley, M. (2012), "Statistical analysis of the 2010 Mw 7.1 Darfield earthquake aftershock sequence", New Zeal. J. Geol. Geophys., 55(3), 305-311. https://doi.org/10.1080/00288306.2012.676556.
- Shokrabadi, M. and Burton, H.V. (2018), "Building service life economic loss assessment under sequential seismic events", Earthq. Eng. Struct. Dyn.., 47(9), 1864-1881. https://doi.org/10.1002/eqe.3045
- Shokrabadi, M. and Burton, H.V. (2018), "Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames", Struct. Safety., 73, 64-74. https://doi.org/10.1016/j.strusafe.2018.03.003.
- Shokrabadi, M., Burton, H.V. and Stewart, J.P. (2018), "Impact of sequential ground motion pairing on mainshock-aftershock structural response and collapse performance assessment", J. Struct. Eng., 144(10). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002170.
- Silwal, B. and Ozbulut, O.E. (2018), "Aftershock fragility assessment of steel moment frames with self-centering dampers", Eng. Struct., 168, 12-22. https://doi.org/10.1016/j.engstruct.2018.04.071.
- Song, R., Li, Y. and Van De Lindt, J.W. (2016), "Loss estimation of steel buildings to earthquake mainshock-aftershock sequences", Struct. Safety., 61, 1-11. https://doi.org/10.1016/j.strusafe.2016.03.002.
- Sun, C.G., Choa, H.I. and Kim, H.S. (2018), "Engineering seismological characteristics of the 12 September 2016 Gyeongju earthquakes", Earthq. Struct., 15(1), 19-27. https://doi.org/10.12989/eas.2018.15.1.019.
- Yan, X., Xu, Z.D. and Shi, Q.X. (2020), "Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper", JVC/J. Vib. Control., 26(21-22), 2037-2049. https://doi.org/10.1177/1077546320910003.