DOI QR코드

DOI QR Code

Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events

  • Noureldin, Mohamed (Department of Civil and Architectural Engineering, Sungkyunkwan University) ;
  • Adane, Michael (Department of Civil and Architectural Engineering, Sungkyunkwan University) ;
  • Kim, Jinkoo (Department of Civil and Architectural Engineering, Sungkyunkwan University)
  • Received : 2020.07.09
  • Accepted : 2021.07.12
  • Published : 2021.09.25

Abstract

This paper presents a mainshock-aftershock seismic fragility and collapse capacity assessment of reinforced concrete (RC) structures retrofitted with a hybrid damper composed of a steel slit plate and friction pads. Three and eight-story RC buildings are designed and assessed before and after retrofit considering the aftershocks effect. Non-linear time-history response analysis (NLTHA) using twelve natural earthquake sequences are used to produce incremental dynamic analysis (IDA) curves to obtain the median collapse capacity of the structures. Three different damage state (DS) levels are used for the mainshock ground excitation to quantify the scale factors required for conducting the aftershock IDAs. The maximum inter-story drift ratio (MIDR) is used as the main engineering demand parameter. The study shows the importance of considering the aftershock in the seismic assessment process of RC structures. The un-retrofitted structures are found to experience a high level of deterioration under aftershock event which is not considered in the design stage. The findings of the study reveal that the mainshock-aftershock sequence responses of the retrofitted structures show better performance in terms of the median collapse capacity and the seismic fragility compared to the un-retrofitted ones.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean government(MSIT) (No. 2021R1A2C2006631).

References

  1. ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14), Michigan, U.S.A.
  2. Amiri, G.G. and Rajabi, E. (2018), "Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures", Comput. Concrete, 21(1), 55-66. https://doi.org/10.12989/cac.2018.21.1.055.
  3. ASCE-41 (2013), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, U.S.A.
  4. ASCE/SEI-7 (2016), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, U.S.A.
  5. Bojorquez, E. and Ruiz-Garcia, J. (2013), "Residual drift demands in moment-resisting steel frames subjected to narrow-band earthquake ground motions", Earthq. Eng. Struct Dyn., 42(11), 1583-1598. https://doi.org/10.1002/eqe.2288.
  6. Celik, O.C. and Ellingwood, B.R. (2009), "Seismic risk assessment of gravity load designed reinforced concrete frames subjected to Mid-America ground motions", J. Struct. Eng., 135(4), 414-424. http://dx.doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414).
  7. DesRoches, R., Comerio, M., Eberhard, M., Mooney, W., and Rix, G.J. (2011), "Overview of the 2010 Haiti earthquake", Earthq. Spectra., 27(1_suppl1), 1-21. https://doi.org/10.1193/1.3630129.
  8. Di Trapani, F. and Malavisi, M. (2019), "Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach", Bull. Earthq. Eng., 17(1), 211-235. https://doi.org/10.1007/s10518-018-0445-2.
  9. Dong, Y. and Frangopol, D.M. (2015), "Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties", Eng. Struct., 83, 198-208. https://doi.org/10.1016/j.engstruct.2014.10.050.
  10. Eldin, M., Assefa, J. and Kim, J. (2020a), "Seismic retrofit of framed buildings using self-centering PC frames", J. Struct. Eng., 146(10), 04020208. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002786.
  11. Eldin, M., Naeem, A. and Kim, J. (2020b), "Seismic retrofit of a structure using self-centring precast concrete frames with enlarged beam ends", Mag. Concrete Res., 72(22), 1155-1170, https://doi.org/10.1680/jmacr.19.00012.
  12. Eldin, M.N., Kim, J. and Kim, J.K. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  13. FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington DC, U.S.A.
  14. Gaetani d'Aragona, M., Polese, M., Elwood, K.J., Baradaran Shoraka, M. and Prota, A. (2017), "Aftershock collapse fragility curves for non-ductile RC buildings", Scenario-Based Assessment, 46(13), 2083-2102. https://doi.org/10.1002/eqe.2894.
  15. Goda, K., Pomonis, A., Chian, S.C., Offord, M., Saito, K., Sammonds, P. and Macabuag, J. (2013), "Ground motion characteristics and shaking damage of the 11th March 2011 Mw 9. 0 Great East Japan earthquake", Bull Earthq. Eng., 11(1), 141-170. https://doi.org/10.1007/s10518-012-9371-x.
  16. Kim, J. (2019), "Development of seismic retrofit devices for building structures", Int. J. High-Rise Build., 8(3), 221-227. https://doi.org/10.21022/ijhrb.2019.8.3.221.
  17. Kostinakis, K. and Morfidis, K. (2017), "The impact of successive earthquakes on the seismic damage of multistory 3D R/C buildings", Earthq. Struct., 12(1), 1-12. https://doi.org/10.12989/eas.2017.12.1.001.
  18. Lee, J., Kang, H. and Kim, J. (2017), "Seismic performance of steel plate slit-friction hybrid dampers", J. Construct. Steel Res., 136, 128-139. http://dx.doi.org/10.1016/j.jcsr.2017.05.005
  19. Moss, R.E.S., Thompson, E.M., Scott Kieffer, D., Tiwari, B., Hashash, Y.M.A., Acharya, I. and Uprety, S. (2015), "Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake, and aftershocks", Seismol. Res. Lett., 86(6), 1514-1523. https://doi.org/10.1785/0220150158.
  20. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable system", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  21. Noureldin, M., Ali, A., Nasab, M. and Kim, J. (2021), "Optimum distribution of seismic energy dissipation devices using neural network and fuzzy inference system", Comput. Aid. Civil Infrastruct., 1-16. https://doi.org/10.1111/mice.1267.
  22. Noureldin, M., Dereje, A.J. and Kim, J.K. (2020), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
  23. Park, S.W., Park, H.S., Oh, B.K. and Choi, S.W. (2018), "Fragility assessment model of building structures using characteristics of artificial aftershock motions", Comput. Aid. Civil Infrastruct. Eng., 33(8), 691-708. https://doi.org/10.1111/mice.12369.
  24. PEER, NGA Database (2019), The Pacific Earthquake Engineering Research Center, Pacific Earthq. Eng. Res. Center (PEER), Berkeley, CA, U.S.A. http://ngawest2.berkeley.edu
  25. Penna, A., Morandi, P., Rota, M., Manzini, C.F., da Porto, F. and Magenes, G. (2014), "Performance of masonry buildings during the Emilia 2012 earthquake", Bull. Earthq. Eng., 12(5), 2255-2273. https://doi.org/10.1007/s10518-013-9496-6.
  26. Ruiz-Garcia, J. and Aguilar, J.D. (2015), "Aftershock seismic assessment taking into account post-mainshock residual drifts", Earthq. Eng. Struct. Dyn., 44(9), 1391-1407. https://doi.org/10.1002/eqe.2523.
  27. Ruiz-Garcia, J., Marin, M.V. and Teran-Gilmore, A. (2014), "Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites", Soil Dyn. Earthq. Eng., 63, 56-68. https://doi.org/10.1016/j.soildyn.2014.03.008.
  28. SAP2000, Ver. 18 (2018), "Analysis reference manual", Comput. Struct., Berkeley, U.S.A.
  29. Shcherbakov, R., Nguyen, M. and Quigley, M. (2012), "Statistical analysis of the 2010 Mw 7.1 Darfield earthquake aftershock sequence", New Zeal. J. Geol. Geophys., 55(3), 305-311. https://doi.org/10.1080/00288306.2012.676556.
  30. Shokrabadi, M. and Burton, H.V. (2018), "Building service life economic loss assessment under sequential seismic events", Earthq. Eng. Struct. Dyn.., 47(9), 1864-1881. https://doi.org/10.1002/eqe.3045
  31. Shokrabadi, M. and Burton, H.V. (2018), "Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames", Struct. Safety., 73, 64-74. https://doi.org/10.1016/j.strusafe.2018.03.003.
  32. Shokrabadi, M., Burton, H.V. and Stewart, J.P. (2018), "Impact of sequential ground motion pairing on mainshock-aftershock structural response and collapse performance assessment", J. Struct. Eng., 144(10). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002170.
  33. Silwal, B. and Ozbulut, O.E. (2018), "Aftershock fragility assessment of steel moment frames with self-centering dampers", Eng. Struct., 168, 12-22. https://doi.org/10.1016/j.engstruct.2018.04.071.
  34. Song, R., Li, Y. and Van De Lindt, J.W. (2016), "Loss estimation of steel buildings to earthquake mainshock-aftershock sequences", Struct. Safety., 61, 1-11. https://doi.org/10.1016/j.strusafe.2016.03.002.
  35. Sun, C.G., Choa, H.I. and Kim, H.S. (2018), "Engineering seismological characteristics of the 12 September 2016 Gyeongju earthquakes", Earthq. Struct., 15(1), 19-27. https://doi.org/10.12989/eas.2018.15.1.019.
  36. Yan, X., Xu, Z.D. and Shi, Q.X. (2020), "Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper", JVC/J. Vib. Control., 26(21-22), 2037-2049. https://doi.org/10.1177/1077546320910003.