과제정보
We are very grateful to the anonymous Referees for the some valuable comments of this manuscript.
참고문헌
- Daewook Kim, Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Mathematical Journal 34 (2016), 399412.
- Daewook Kim, Mathematical modelling for the axially moving membrane with internal time delay, East Asian Mathematical Journal 37 (2021), 141147. https://doi.org/10.7858/EAMJ.2021.012
- Daewook Kim, Exponential Decay for the Solution of the Viscoelastic Kirchhoff Type Equation with Memory Condition at the Boundary, East Asian Mathematical Journal 34 (2018), 69-84. https://doi.org/10.7858/eamj.2018.008
- Daewook Kim, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014. https://doi.org/10.1016/j.camwa.2011.08.011
- Daewook Kim, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617. https://doi.org/10.1016/j.na.2012.01.018
- G. Kirchhoff, Vorlesungenuber Mechanik, Teubner, Leipzig, 1983.
- J. Limaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with nonhomogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820. https://doi.org/10.1016/j.jmaa.2008.02.051
- F. Pellicano and F. Vestroni, Complex dynamics of high-speed axially moving systems, Journal of Sound and Vibration, 258 (2002), 31-44. https://doi.org/10.1006/jsvi.2002.5070
- S. S. Rao, Vibration of continuous systems, Wiley, Florida, 2005.
- A. Daz-de-Anda, J. Flores, L. Gutirrez, R.A. Mndez-Snchez, G. Monsivais, and A. Morales Experimental study of the Timoshenko beam theory predictions, Journal of Sound and Vibration 34 (2012), 57325744.