References
- R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997. DOI: 10.1023/A:1008202821328.
- J. Brest, S. Greiner, B. Boskovic B, M. Mernik, and V. Zumer, "Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems," IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646-657, 2006. DOI: 10.1109/TEVC.2006.872133.
- Y. Wang, Z. Cai, and Q. Zhang, "Differential evolution with composite trial vector generation strategies and control parameters," IEEE Transactions on Evolutionary Computation, vol 15, no. 1, pp. 55-66, 2011. DOI: 10.1109/TEVC.2010.2087271.
- F. V. d. Bergh and A. P. Engelbrecht, "A cooperative approach to particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225-239, 2004. DOI: 10.1109/TEVC.2004.826069.
- M. A. Potter and K. A. De Jong, "A cooperative coevolutionary approach to function optimization," in Proceedings of International Conference on Parallel Problem Solving from Nature, vol. 866, pp. 249-257, 1994. DOI: 10.1007/3-540-58484-6_269.
- Z. Yang, K. Tang, and X. Yao, "Large scale evolutionary optimization using cooperative coevolution," Information Sciences, vol. 178, no. 15, pp. 2985-2999, 2008. DOI: 10.1016/j.ins.2008.02.017.
- Y. Mei, M. N. Omidvar, X. Li, and X. X. Yao, "A competitive divide-and-conquer algorithm for unconstrained large-scale blackbox optimization," ACM Transactions on Mathematical Software, vol. 42, no. 2, pp. 1-42, 2016. DOI: 10.1145/2791291.
- X. Guan, X. Zhang, J. Wei, I. Hwang, Y. Zhu, and K. Cai, "A strategic conflict avoidance approach based on cooperative coevolutionary with the dynamic grouping strategy," International Journal of Systems Science, vol. 47, no. 9, pp. 1995-2008, 2016. DOI: 10.1080/00207721.2014.966282.
- X. M. Hu, F. L. He, W. E. Chen, and J. Zhong, "Cooperation coevolution with fast interdependency identification for large scale optimization," Information Sciences, vol. 381, pp. 142-160, 2017. DOI: 10.1016/j.ins.2016.11.013.
- X. Li and X. Yao, "Cooperatively coevolving particle swarms for large scale optimization," IEEE Transactions on Evolutionary Computation, vol. 16, no. 2, pp. 210-224, 2012. DOI: 10.1109/TEVC.2011.2112662.
- M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, "DG2: a faster and more accurate differential grouping for large-scale black-box optimization," IEEE Transactions on Evolutionary Computation, vol. 21, no. 6, pp. 929-942, 2017. DOI: 10.1109/TEVC.2017.2694221.
- X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, DB Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, "Mllib: machine learning in apache spark," The Journal of Machine Learning Research, vol. 17, no. 1, pp 1235-1241, 2016. DOI:10.5555/2946645.2946679.
- L. Wan, G. Zhang, H. Li, and C. Li, "A novel bearing fault diagnosis method using Spark-based parallel ACO-K-means clustering algorithm," IEEE Access, vol. 9, pp. 28753-28768, 2021. DOI:10.1109/ACCESS.2021.3059221.
- Z. Jizhao, J. Yantao, X. Jun, Q. Jianzhong, W. Yuanzhuo,C. Xueqi, "SparkCRF: a parallel implementation of CRFs algorithm with spar," Journal of Computer Research and Development, vol. 53, no. 8. pp. 1819-1828, 2016. DOI: 10.7544/issn1000-1239.2016.20160197.
- C. Deng, X. Tan, X. Dong, and Y. Tan, "A parallel version of differential evolution based on resilient distributed datasets model," in Proceedings of Bio-Inspired Computing- Theories and Applications, Springer, Berlin, Heidelberg. vol. 562, pp 84-93, 2015. DOI: 10.1007/978-3-662-49014-3_8.
- D. Teijeiro, X. C. Pardo, P. Gonzalez, J. R. Banga, and R. Doallo, "Implementing parallel differential evolution on Spark," in Proceedings of European Conference on the Applications of Evolutionary Computation, Lecture Notes in Computer Science, vol. 9598, pp. 75-90, 2016. DOI:10.1007/978-3-319-31153-1_6.
- B. Liu, S. He, D. He, Y. Zhang, and M. Guizani, "A Spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data," in IEEE Access, vol. 7, pp. 42169-42180, 2019. DOI: 10.1109/ACCESS.2019.2907573.
- R. A. Hasan, R. A. I. Alhayali, N. D. Zaki, and A. H. Ali, "An adaptive clustering and classification algorithm for Twitter data streaming in Apache Spark," Telkomnika, 2019, vol. 17, no. 6, pp. 3086-3099, 2019. DOI:10.12928/TELKOMNIKA.v17i6.11711.
- C. Zhou, "Fast parallelization of differential evolution algorithm using MapReduce," in Proceedings of the 12th annual conference on Genetic and evolutionary computation, pp. 1113-1114, 2010. DOI: 10.1145/1830483.1830689
- K. Tagawa and T. Ishimizu, "Concurrent differential evolution based on MapReduce," International Journal of computers, vol. 4, no. 4, pp. 161-168, 2010.
- H. Peng, X. Tan, C. Deng and S. Peng, "SparkCUDE: a spark-based differential evolution for large-scale global optimization," International Journal of High Performance Systems Architecture, vol. 7, no. 4, pp. 211-222, 2017. DOI: 10.1504/IJHPSA.2017.092390.
- M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica, "Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing," in Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, pp. 15-28, 2012. DOI:10.5555/2228298.2228301.
- K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: A practical approach to global optimization, Springer, 2005.
- X. W. Wang, Q. Y. Dai, W. C. Jiang, and J. Z. Cao, "Retrieval of design patent images based on MapReduce model," Journal of Chinese Computer Systems, vol. 33, no. 3, pp. 626-632, 2012. https://doi.org/10.3969/j.issn.1000-1220.2012.03.034
- X. Yao, Y. Liu, and G. Lin, "Evolutionary programming made faster," IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82-102, 1999. DOI:10.1109/4235.771163.
- Y. Wang, Z. Cai, and Q. Zhang, "Enhancing the search ability of differential evolution through orthogonal crossover," Information Sciences, vol. 185, no. 1, pp. 153-177, 2012. DOI: 10.1016/j.ins.2011.09.001.
- J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95 International Conference on Neural Networks, pp. 1942-1948, 1995. DOI: 10.1109/ICNN.1995.488968.