DOI QR코드

DOI QR Code

드론 기반의 무선 통신 시스템에서 주파수 효율 향상을 위한 확률적 핸드오버 기법

A Probabilistic Handover Scheme for Enhancing Spectral Efficiency in Drone-based Wireless Communication Systems

  • Jang, Hwan Won (Department of Computer Engineering, Kwangwoon University) ;
  • Woo, Dong Hyuck (Department of Computer Engineering, Kwangwoon University) ;
  • Hwang, Ho Young (School of Computer and Information Engineering, Kwangwoon University)
  • 투고 : 2021.06.15
  • 심사 : 2021.06.29
  • 발행 : 2021.09.30

초록

본 논문에서는 기지국의 역할을 수행하는 드론을 기반으로 하는 무선 통신 시스템에서 주파수 효율 성능 향상을 위한 확률적 핸드오버 기법을 제안한다. 제안하는 기법은 이동하는 드론 기지국이 지상에 위치한 사용자 단말에게 서비스를 제공하는 무선 네트워크 환경에서 드론 기지국과 사용자 단말 간 거리 및 소규모 페이딩을 고려하여 드론기지국들 간의 핸드오버를 수행한다. 또한, 제안하는 기법은 빈번한 핸드오버 수행 시 발생할 수 있는 시그널링 오버헤드를 완화하기 위해 드론 기지국들 간 핸드오버를 수행할 확률을 고려한다. 드론 기반 무선 통신 시스템에서의 시뮬레이션을 통해 제안하는 핸드오버 기법 및 기존 핸드오버 기법의 주파수 효율 성능 및 핸드오버 확률을 평가한다. 시뮬레이션 결과를 통해 드론 기지국과 사용자 단말 간의 거리만을 고려한 기존의 핸드오버 기법보다 제안하는 핸드오버 기법에서 더 높은 평균 주파수 효율 성능이 나타남을 보인다.

In this paper, we propose a probabilistic handover scheme for enhancing spectral efficiency in drone-based wireless communication systems. When a moving drone base station (DBS) provides the drone-based wireless communication service to a user equipment (UE) located on the ground, our proposed handover scheme considers the distance between DBS and UE and small scale fading. In addition, our proposed handover scheme considers a handover probability to mitigate the signalling overhead that may occur when performing frequent handovers. Through simulations for drone-based wireless communication systems, we evaluate the spectral efficiency and the handover probability of our proposed handover scheme and the conventional handover scheme. The simulation results show that our proposed handover scheme can achieve higher average spectral efficiency than the conventional handover scheme which considers only the distance between DBS and UE.

키워드

과제정보

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2018R1D1A1B07049601) and by the Excellent researcher support project of Kwangwoon University in 2021.

참고문헌

  1. R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovacs, J. Wigard, and T. B. Sorensen, "Radio channel modeling for UAV communication over cellular networks," IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 514-517, Aug. 2017. https://doi.org/10.1109/LWC.2017.2710045
  2. E. Yanmaz, S. Yahyanejad, B. Rinner, H. Hellwagner, and C. Bettstetter, "Drone networks: Communications, coordination, and sensing," Ad Hoc Networks, vol. 68, pp. 1-15, Jan. 2018. https://doi.org/10.1016/j.adhoc.2017.09.001
  3. X. Yuan, Z. Feng, W. Xu, W. Ni, J. A. Zhang, Z. Wei, and R. P. Liu, "Capacity analysis of UAV communications: Cases of random trajectories," IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7564-7576, Aug. 2018. https://doi.org/10.1109/tvt.2018.2829726
  4. P. K. Sharma and D. I. Kim, "Coverage probability of 3-D mobile UAV networks," IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 97-100, Feb. 2019. https://doi.org/10.1109/lwc.2018.2859923
  5. S. Sadr and R. S. Adve, "Handoff rate and coverage analysis in multi-tier heterogeneous networks," IEEE Transactions on Wireless Communications, vol. 14, no. 5, pp. 2626-2638, May. 2015. https://doi.org/10.1109/TWC.2015.2390224
  6. S. Y. Hsueh and K. H. Liu, "An equivalent analysis for handoff probability in heterogeneous cellular networks," IEEE Wireless Communications Letters, vol. 21, no. 6, pp. 1405-1408, Jun. 2017. https://doi.org/10.1109/LCOMM.2017.2676107
  7. M. M. Hasan, S. Kwon, and S. Oh, "Frequent-handover mitigation in ultra-dense heterogeneous networks," IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 1035-1040, Jan. 2019. https://doi.org/10.1109/TVT.2018.2874692
  8. J. C. Lee and S. Y. Shin, "A handover admission control in mobile communication networks," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no. 5, pp. 1067-1072, May. 2014. https://doi.org/10.6109/jkiice.2014.18.5.1067
  9. M. Banagar, V. V. Chetlur, and H. S. Dhillon, "Handover probability in drone cellular networks," IEEE Wireless Communications Letters, vol. 9, no. 7, pp. 933-937, Jul. 2020. https://doi.org/10.1109/lwc.2020.2974474
  10. M. Banagar and H. S. Dhillon, "Fundamentals of drone cellular network analysis under random waypoint mobility model," in Proceeding of the IEEE Global Communications Conference, pp. 1-6, Dec. 2019.
  11. M. Salehi and E. Hossain, "Handover rate and sojourn time analysis in mobile drone-assisted cellular networks," IEEE Wireless Communications Letters, vol. 10, no. 2, pp. 392-395, Feb. 2021. https://doi.org/10.1109/LWC.2020.3032596
  12. M. Tayyab, X. Gelabert, and R. Jantti, "A survey on handover management: From LTE to NR," IEEE Access, vol. 7, pp. 118907-118930, Aug. 2019. https://doi.org/10.1109/ACCESS.2019.2937405
  13. T. Bilen, B. Canberk, and K. R. Chowdhury, "Handover management in software-defined ultra-dense 5G networks," IEEE Network, vol. 31, no. 4, pp. 49-55, Jul. 2017. https://doi.org/10.1109/MNET.2017.1600301
  14. D. Lopez-Perez, I. Guvenc, and X. Chu, "Theoretical analysis of handover failure and ping-pong rates for heterogeneous networks," in Proceeding of the IEEE International Conference on Communications, pp. 6774-6779, Jun. 2012.
  15. J. Lyu, Y. Zeng, and R. Zhang, "UAV-aided offloading for cellular hotspot," IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp. 3988-4001, Jun. 2018. https://doi.org/10.1109/twc.2018.2818734