Acknowledgement
This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project title: A survey on suitable agro-climate zones and productivity change of forage under climate condition, and assessing impact and vulnerability of forage to climate condition, Project No. PJ015079022021)" Rural Development Administration, Republic of Korea.
References
- Bell, J. 2017. Corn growth stages and development. Texas A and M AgriLife Extension, Amarillo, USA. https://amarillo.tamu.edu/files/2017/07/CORN-GROWTH-STAGES-AND-DEVELOPMENT.pdf (Cited 2017 July 20).
- Buhrmann, R.D., Ramdhani, S., Pammenter, N.W. and Naidoo, S. 2016. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland. Bothalia. 46(2):2122.
- Commuri, P.D. and Jones, R.J. 2001. High Temperatures during endosperm cell division in maize: A genotypic comparison under in vitro and field conditions. Crop Science. 41(4):1122-1130. https://doi.org/10.2135/cropsci2001.4141122x
- Flanagan, L.B., Sharp, E.J. and Letts, M.G. 2013. Response of plant biomass and soil respiration to experimental warming and precipitation manipulation in a Northern Great Plains grassland. Agricultural and Forest Meteorology. 173(5):40-52. https://doi.org/10.1016/j.agrformet.2013.01.002
- Hall A.E. 2001. Crop developmental responses to temperature, photoperiod, and light quality. In: A.E. Hall (Ed.), Crop responses to environment. CRC Press, Boca Raton, USA. pp. 81-93.
- Hatfield, J.L., Wright-Morton, L. and Hall, M.B. 2017. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Climatic Change. 146(1-2):263-275. https://doi.org/10.1007/s10584-017-1997-x
- Herrero, M.P. and Johnson, R.R. 1980. High temperature stress and pollen viability of maize. Crop Science. 20(6):796-800. https://doi.org/10.2135/cropsci1980.0011183X002000060030x
- IPCC. 2013. Summary for policymakers. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. p. 3.
- IPCC. 2014. Climate change 2014: Synthesis report. In: Core writing team, R.K. Pachauri and L.A. Meyer (Eds.), Contribution of working group I, II and III to fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland. pp. 50-60.
- Lee, B.W., Kim, K.S., Lee, K.J., Seo, B.S., Choi, D.H., Ban, H.Y., Jung, W.S., Yoo, B.H., Lee, D.J., Kim, Y.U., Hyun, S.W., Oh, J.Y., Kim, J.S., Ko, J.H., Kim, J.H., Kim, H.Y., Cho, K.W., Kim, M.J., Jeong, S.T., Seo, M.C., Cho, H.S., Song, W.G. and Shin, P. 2017. Assessment of climate change (RCP scenario) Impact on productivity and suitable cultivation region of major food crops and adaptation technologies using crop growth simulation models. PJ010107. Rural Development Administration(RDA), Republic of Korea. pp. 83-161.
- Lizaso, J.I., Ruiz-Ramos, M., Rodriguez, L., Gabaldon-Leal, C., Oliveira, J.A., Lorite, I.J., Sanchez, D., Garcia, E. and Rodriguez, A. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research. 216:129-140. https://doi.org/10.1016/j.fcr.2017.11.013
- Meng, F., Zhang, J., Yao, F. and Hao, C. 2014. Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in northeast China. PLoS ONE. 9(5):98318.
- Morin, X., Roy, J., Sonie, L., and Chuine, I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist. 186(4):900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
- Ordonez, R.A., Savin, R., Cossani, C.M. and Slafer, G.A. 2015. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research. 183:184-203. https://doi.org/10.1016/j.fcr.2015.07.010
- Schindlbacher, A., Zechmeister-Boltenstern, S. and Jandl, R. 2009. Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology. 15(4):901-913. https://doi.org/10.1111/j.1365-2486.2008.01757.x
- Shim, D., Lee, K.J. and Lee, B.W. 2017. Response of phenology- and yield-related traits of maize to elevated temperature in a temperate region. The Crop Journal. 5(4):305-316. https://doi.org/10.1016/j.cj.2017.01.004
- Shindell, D. and Faluvegi, G. 2009. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience. 2:294-300. https://doi.org/10.1038/ngeo473
- Son, B.Y., Kim, J.T., Song, S.Y., Baek, S.B., Kim, C.K. and Kim, J.D. 2009. Comparison of yield and forage quality of silage corns at different planting dates. Journal of the Korean Society of Grassland and Forage Science. 29(3):179-186. https://doi.org/10.5333/KGFS.2009.29.3.179
- Sun, S.Q., Peng, L., Wang, G.X., Wu, Y.H., Zhou, J., Bing, H.J., Yu, D. and Luo, J. 2013. An improved open-top chamber warming system for global change research. Silva Fennica. 47(2):960.
- Wang, J., Mao, Y., Huang, T., Lu, W., and Lu, D. 2020. Water and heat stresses during grain formation affect the physicochemical properties of waxy maize starch. Journal of the Science of Food and Agriculture. 101(4):1331-1339.
- Welshofer, K.B., Zarnetske, P.L., Lany, N.K. and Thompson, L.A.E. 2018. Open-top chambers for temperature manipulation in taller-stature plant communities. Methods in Ecology and Evolution. 9(2):254-259. https://doi.org/10.1111/2041-210x.12863