DOI QR코드

DOI QR Code

Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors

슈퍼커패시터용 폐면 티셔츠로부터 질소 도핑된 다공성 탄소 직물의 제조 및 전기화학 특성 평가

  • Chang, Hyeong-Seok (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Hwang, Ahreum (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Yun, Je Moon (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
  • 장형석 (충남대학교 고분자공학과) ;
  • 황아름 (충남대학교 고분자공학과) ;
  • 이병민 (충남대학교 고분자공학과) ;
  • 윤제문 (동의대학교 신소재공학부) ;
  • 최재학 (충남대학교 고분자공학과)
  • Received : 2021.07.16
  • Accepted : 2021.08.20
  • Published : 2021.09.27

Abstract

Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as high-performance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogen-doped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.

Keywords

Acknowledgement

This research was supported by Chungnam National University (2020-2021).

References

  1. C. Liu, F. Li, L. P. Ma and H. M. Cheng, Adv. Mater., 22, E28 (2010). https://doi.org/10.1002/adma.200903328
  2. J. Libich, J. Maca, J. Vondrak, O. Cech and M. Sedlarikova, J. Energy Storage, 17, 224 (2018). https://doi.org/10.1016/j.est.2018.03.012
  3. W. Raza, F. Ali, N. Raza, Y. Luo, K. H. Kim, J. Yang, S. Kumar, A. Mehmood and E. E. Kwon, Nano Energy, 52, 441 (2018). https://doi.org/10.1016/j.nanoen.2018.08.013
  4. L. Kouchachvili, W. Yaici and E. Entchev, J. Power Sources, 374, 237 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.040
  5. Poonam, K. Sharma, A. Arora and S. K. Tripathi, J. Energy Storage, 21, 801 (2019). https://doi.org/10.1016/j.est.2019.01.010
  6. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and M. Chesneau, J. Power Sources, 101, 109 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8
  7. L. L. Zhang, Y. Gu and X. S. Zhao, J. Mater. Chem. A, 1, 9395 (2013). https://doi.org/10.1039/c3ta11114h
  8. A. Cross, A. Morel, A. Cormie, T. Hollenkamp and S. Donne, J. Power Sources, 196, 7847 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.049
  9. D. Majumdar, T. Maiyalagan and Z. Jiang, ChemElectro Chem, 6, 4343 (2019). https://doi.org/10.1002/celc.201900668
  10. A. U. Agobi, H. Louis, T. O. Magu and P. M. Dass, J. Chem. Rev., 1, 19 (2019). https://doi.org/10.33945/SAMI/JCR.2019.1.1934
  11. S. Meer, A. Kausar and T. Iqbal, Polym.-Plast. Technol. Eng., 55, 1416 (2016). https://doi.org/10.1080/03602559.2016.1163601
  12. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009). https://doi.org/10.1039/b813846j
  13. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse and D. Aurbach, J. Mater. Chem. A, 5, 12653 (2017). https://doi.org/10.1039/C7TA00863E
  14. A. C. Rodrigues, E. L. D. Silva, A. P. S. Oliveira, J. T. Matsushima, A. Cuna, J. S. Marcuzzo, E. S. Goncalves and M. R. Baldan, Mater. Today Commun., 21, 100553 (2019). https://doi.org/10.1016/j.mtcomm.2019.100553
  15. R. Farzana, R. Rajarao, B. R. Bhat and V. Sahajwalla, J. Ind. Eng. Chem., 65, 387 (2018). https://doi.org/10.1016/j.jiec.2018.05.011
  16. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian and F. Wei, Carbon, 141, 467 (2019). https://doi.org/10.1016/j.carbon.2018.10.010
  17. S. Dai, Z. Liu, B. Zhao, J. Zeng, H. Hu, Q. Zhang, D. Chen, C. Qu, D. Dang and M. Liu, J. Power Sources, 387, 43 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.055
  18. S. K. Simotwo, C. Delre and V. Kalra, ACS Appl. Mater. Interfaces, 8, 21261 (2016). https://doi.org/10.1021/acsami.6b03463
  19. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  20. S. Zhou, X. Li, Z. Wang, H. Guo and W. Peng, Trans. Nonferrous Met. Soc. China, 17, 1328 (2007). https://doi.org/10.1016/S1003-6326(07)60271-4
  21. E. Y. L. Teo, L. Muniandy, E. P. Ng, F. Adam, A. R. Mohamed, R. Jose and K. F. Chong, Electrochim. Acta, 192, 110 (2016). https://doi.org/10.1016/j.electacta.2016.01.140
  22. P. Yang and W. Mai, Nano Energy, 8, 274 (2014). https://doi.org/10.1016/j.nanoen.2014.05.022
  23. Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie and C. M. Chen, J. Mater. Chem. A, 7, 16028 (2019). https://doi.org/10.1039/C9TA04436A
  24. C. Liu, H. Wang, X. Zhao, H. Liu, Y. Sun, L. Tao, M. Huang, J. Shi and Z. Shi, J. Power Sources, 457, 228056 (2020). https://doi.org/10.1016/j.jpowsour.2020.228056
  25. N. M. Nor, L. L. Chung, L. K. Teong and A. R. Mohamed, J. Environ. Chem. Eng., 1, 658 (2013). https://doi.org/10.1016/j.jece.2013.09.017
  26. G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang, H. Zhang, Y. Sun, F. Besenbacher and M. Yu, Nano Energy, 47, 547 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016
  27. S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni and Y. M. Yan, J. Power Sources, 387, 81 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.061
  28. Y. Lu, J. Liang, S. Deng, Q. He, S. Deng, Y. Hu and D. Wang, Nano Energy, 65, 103993 (2019). https://doi.org/10.1016/j.nanoen.2019.103993
  29. B. Xu, D. Zheng, M. Jia, G. Cao and Y. Yang, Electrochim. Acta, 98, 176 (2013). https://doi.org/10.1016/j.electacta.2013.03.053
  30. F. Gao, J. Qu, Z. Zhao, Z. Wang and J. Qiu, Electrochim. Acta, 190, 1134 (2016). https://doi.org/10.1016/j.electacta.2016.01.005
  31. H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang and Z. Lei, Electrochim. Acta, 190, 862 (2016). https://doi.org/10.1016/j.electacta.2015.12.195
  32. A. G. Dumanli and A. H. Windle, J. Mater. Sci., 47, 4236 (2012). https://doi.org/10.1007/s10853-011-6081-8
  33. S. Saha, P. Samanta, N. C. Murmu and T. Kuila, J. Energy Storage, 17, 181 (2018). https://doi.org/10.1016/j.est.2018.03.006
  34. Q. Abbas, R. Raza, I. Shabbir and A. G. Olabi, J. Sci., 4, 341 (2019).
  35. S. L. Candelaria, B. B. Garcia, D. Liu and G. Cao, J. Mater. Chem., 22, 9884 (2012). https://doi.org/10.1039/c2jm30923h
  36. Y. Deng, Y. Xie, K. Zou and X. Ji, J. Mater. Chem. A, 4, 1144 (2016). https://doi.org/10.1039/C5TA08620E
  37. B. M. Lee, J. J. Eom, G. Y. Baek, S. K. Hong, J. P. Jeun, J. H. Choi and J. M. Yun, Cellulose, 26, 4529 (2019). https://doi.org/10.1007/s10570-019-02380-6
  38. Y. Yu, J. Wang, J. Wang, J. Li, Y. Zhu, X. Li, X. Song and M. Ge, Cellulose, 24, 1669 (2017). https://doi.org/10.1007/s10570-017-1230-0
  39. B. M. Lee, N. Umirov, J. Y. Lee, J. Y. Lee, B. S. Choi, S. K. Hong, S. S. Kim and J. H. Choi, Int. J. Energy Res., 45, 9530 (2021). https://doi.org/10.1002/er.6479
  40. Y. Hu, H. Liu, Q. Ke and J. Wang, J. Mater. Chem. A, 2, 11753 (2014). https://doi.org/10.1039/C4TA01269K
  41. A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey and P. M. Ajayan, ACS Nano, 4, 6337 (2010). https://doi.org/10.1021/nn101926g
  42. L. Z. Fan, T. T. Chen, W. L. Song, X. Li and S. Zhang, Sci. Rep., 5, 15388 (2015). https://doi.org/10.1038/srep15388
  43. B. M. Lee, H. S. Chang, J. H. Choi and S. K. Hong, Korean J. Mater. Res., 31, 264 (2021). https://doi.org/10.3740/MRSK.2021.31.5.264
  44. B. Xu, D. Zheng, M. Jia, G. Cao and Y. Yang, Electrochim. Acta, 98, 176 (2013). https://doi.org/10.1016/j.electacta.2013.03.053
  45. H. J. Kim, C. M. Lee, K. Dazen, C. D. Delhom, Y. Liu, J. E. Rodgers, A. D. French and S. H. Kim, Cellulose, 24, 2385 (2017). https://doi.org/10.1007/s10570-017-1282-1
  46. F. Nindiyasari, E. Griesshaber, T. Zimmermann, A. P. Manian, C. Randow, R. Zehbe, L. Fernandez-Diaz, A. Ziegler, C. Fleck and W. W. Schmahl, J. Compos. Mater., 50, 657 (2016). https://doi.org/10.1177/0021998315580826
  47. B. M. Lee, V. T. Bui, H. S. Lee, S. K. Hong, H. S. Choi and J. H. Choi, Radiat. Phys. Chem., 163, 18 (2019). https://doi.org/10.1016/j.radphyschem.2019.05.006
  48. T. Kaplas and P. Kuzhir, Nanoscale Res. Lett., 12, 121 (2017). https://doi.org/10.1186/s11671-017-1896-0
  49. X. Zhou, P. Wang, Y. Zhang, X. Zhang and Y. Jiang, ACS Sustain. Chem. Eng., 4, 5585 (2016). https://doi.org/10.1021/acssuschemeng.6b01408
  50. D. S. Kwon, H. Y. Choi, B. M. Lee, Y. G. Jeong, D. Yang, S. T. Kim and J. H. Choi, Appl. Surf. Sci., 471, 328 (2019). https://doi.org/10.1016/j.apsusc.2018.11.236
  51. M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. Oshida, Y. Tanaka, P. Dulyaseree, W. Wongwiriyapan and K. Takeuchi, J. Environ. Chem. Eng., 5, 1801 (2017). https://doi.org/10.1016/j.jece.2017.03.011
  52. S. Yorgun, N. Vural and H. Demiral, Microporous Mesoporous Mat., 122, 189 (2009). https://doi.org/10.1016/j.micromeso.2009.02.032
  53. N. H. Phan, S. Rio, C. Faur, L. L. Coq, P. L. Cloirec and T. H. Nguyen, Carbon, 44, 2569 (2006). https://doi.org/10.1016/j.carbon.2006.05.048
  54. H. G. Jo, D. Y. Shin and H. J. Ahn, Korean J. Mater. Res., 29, 167 (2019). https://doi.org/10.3740/MRSK.2019.29.3.167
  55. B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee and J. H. Choi, Carbon Lett., 31, 67 (2021). https://doi.org/10.1007/s42823-020-00150-0
  56. D. S. Jeong, J. M. Yun and K. H. Kim, RSC Adv., 7, 44735 (2017). https://doi.org/10.1039/C7RA09272E