DOI QR코드

DOI QR Code

톱밥배지에서 재배된 표고버섯 품종별 이화학적 성분 비교

Comparison of the physicochemical components of Lentinula edodes cultivars cultivated in sawdust medium

  • 최지연 (한국식품연구원 식품분석연구센터) ;
  • 김민선 (한국식품연구원 식품분석연구센터)
  • Choi, Ji Yeon (Food Analysis Research Center, Korea Food Research Institute) ;
  • Kim, Min-Sun (Food Analysis Research Center, Korea Food Research Institute)
  • 투고 : 2021.08.30
  • 심사 : 2021.09.23
  • 발행 : 2021.09.30

초록

표고버섯은 톱밥배지 재배기술의 발달로 세계적으로 가장 많이 생산되고 식용되는 버섯이며, 톱밥배지를 이용하여 재배된 표고버섯의 생산량이 늘고 있다. 본 연구에서는 톱밥재배 표고버섯의 품종별 식품학적 차이를 비교하고자 동일 조건에서 재배된 산조701호, 산조707호, 산조 715호, 참아람, L808 총 5품종 표고버섯의 일반성분, 영양성분 및 항산화 활성을 분석하였다. 동결건조된 표고버섯의 일반성분 함량은 회분 4.06~5.92 g/100 g, 조지방 0.75~1.02 g/100 g으로 품종별 차이가 크지 않았으나 조단백질은 21.24~29.15 g/100 g으로 품종간의 유의적 차이를 보였다. Trehalose는 산조701호에서 9.60±0.08 g/100 g으로 가장 높은 함량으로 확인되었다. 총 아미노산 조성은 glutamic acid>aspartic acid>leucine 순으로 높은 분포를 보였으며, 유의적 차이를 보인 아미노산은 glycine, alanine, valine, isoleucine, leucine, phenylalanine이었으며 산조707호, 산조715호, 산조701호, 참아람, L808 순으로 높은 함량을 보였다. 물 추출물의 총 폴리페놀 함량과 총 플라보노이드 함량은 산조715호가 3.49±0.04 mg GAE/g, 1.33±0.03 mg QE/g으로 가장 높게 나타났으며 다른 품종들과 유의적 차이를 나타내었다. 같은 톱밥배지와 환경에서 재배된 표고버섯 5 품종간의 유의적 차이가 확인된 성분은 조단백질, trehalose, 6종의 아미노산이었다. 하지만 한 곳의 임가에서 재배된 표고버섯 품종간의 비교 결과로, 품종별 시료 수를 확대한 추가실험을 통하여 품종간의 구별 가능성을 더욱 세부적으로 검토할 필요가 있다.

With the development of sawdust medium cultivation technology, Lentinula edodes (shiitake mushroom) has become the most extensively produced and consumed mushroom globally. In this study, the approximate composition, nutritional components, and bioactive compounds of L. edodes were analyzed and compared for the five sawdust-cultivated shiitake mushrooms cultivars namely Sanjo701ho, Sanjo707ho, Sanjo715ho, Chamaram, and L808. The approximate range of the composition of freeze-dried shiitake mushrooms was 4.06-5.92 g/100 g of ash, 0.75-1.02 g/100 g of crude fat, and 21.24-29.15 g/100 g of crude protein. Sanjo701ho had the highest trehalose content (9.60±0.08 g/100 g), total polyphenol content (3.49±0.04 mg GAE/g), and total flavonoid content (1.33±0.03 mg QE/g) among the other shiitake mushroom cultivars. The total amino acid content was as follows: glutamic acid>aspartic acid>leucine. Glycine, alanine, valine, isoleucine, leucine, and phenylalanine contents were significantly decreased in the following sequence: Sanjo707ho, Sanjo715ho, Sanjo701ho, Chamaram, and L808. Crude protein, trehalose, and six types of amino acids were identified as classification indicators for the five cultivars of sawdust-cultivated shiitake mushrooms.

키워드

과제정보

본 연구는 한국임업진흥원 산림생명자원 소재 발굴연구사업(과제번호: 2020207A00-2122-BA01)으로부터 지원받아 수행된 결과의 일부이며 이에 감사드립니다.

참고문헌

  1. Akesowan A. 2016. Production and storage stability of formulated chicken nuggets using konjac flour and shiitake mushrooms. J Food Sci Technol 53: 3661-3674. https://doi.org/10.1007/s13197-016-2332-7
  2. An GH, Han JG, Cho JH. 2020. Comparisons of biological activities and amino acid contents of edible mushrooms extracted using different solvents. J Mushroom 18(1): 53-62. https://doi.org/10.14480/JM.2020.18.1.53
  3. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12(2): 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  4. Hong JS, Kim TY. 1988. Centents of free-sugars & free-sugaralcohols in Pleurotus ostreatus, Lentinus edodes & Agaricus bisporus. Kor J Food Sci Technol 20(4): 459-462.
  5. Jacinto-Azevedo B, Valderrama N, Henriquez K, Aranda M, Aqueveque P. 2021. Nutritional value and biological properties of Chilean wild and commercial edible mushrooms. Food Chem 356, 129651. https://doi.org/10.1016/j.foodchem.2021.129651
  6. Jang HL, Lee JH, Hwang MJ, Choi Y, Kim H, Hwang J, Nam JS. 2015. Comparison of physicochemical properties and antioxidant activities between Lentinula edodes and new cultivar Lentinula edodes GNA01. J Korean Soc Food Sci Nutri 44(10): 1484-1491. https://doi.org/10.3746/JKFN.2015.44.10.1484
  7. Jiang T, Feng L, Zheng X, Li J. 2013. Physicochemical responses and microbial characteristics of shiitake mushrooms (Lentinus edodes) to gum arabic coating enriched with natamycin during storage. Food Chem 138(1-2): 1992-1997. https://doi.org/10.1016/j.foodchem.2012.11.043
  8. Jung BH. 2020. A Study on the Supply and Demand Outlook Model for Oak-Mushroom. KJFE. 27(2): 27-40. https://doi.org/10.31541/KJFE.27.2.3
  9. Kim KJ, Im SB, Yun KY, Je HS, Ban SE, Jin SW, Jeong SW, Koh YW, Cho IK, and Seo KS. 2017a. Proximate composition, free sugars, amino acids, and minerals in five Lentinula edodes cultivars collected in Korea J mushroom. 15(4): 216-222. https://doi.org/10.14480/JM.2017.15.4.216
  10. Kim MJ, Chung HJ. 2017b. Quality characteristics and antioxidant activities of rice cookies added with Lentinus edodes powder. Kor J Food Preserv 24: 421-430. https://doi.org/10.11002/kjfp.2017.24.3.421
  11. Kim KJ, Seo KS. 2016. Free sugar, amino acid, and beta-glucan contents in Lentinula edodes strains collected from different areas. J Mushroom. 14(2): 27-33. https://doi.org/10.14480/JM.2016.14.2.27
  12. Koo and Jeong. 2020. Isolation and characterization of polysaccharides purified from Brown Alga Sargassum horneri. Korean J Fish Aquat Sci 53(5): 681-687 https://doi.org/10.5657/KFAS.2020.0681
  13. Lee HY, Moon SY, Shim DH, Hong CP, Lee Y, Koo CD, Chung JW, Ryu HJ. 2017. Development of 44 novel polymorphic SSR markers for determination of Shiitake mushroom (Lentinula edodes) cultivars. Genes 8(4): 109. https://doi.org/10.3390/genes8040109
  14. Lee SJ, Ryu JH, Kim IS. 2020. Physicochemical characteristics and antioxidant activities of Lentinula edodes cultivated with liquid spawn according to harvest cycle. J Mushroom 18(3): 234-243. https://doi.org/10.14480/JM.2020.18.3.234
  15. Lee TS, Yoon KH, Bak WC, Kim JS, Lee jY. 2000. New cultivation technology of oak mushroom. Korea Forest Research Institute pp. 174-175.
  16. Li S, Wang A, Liu L, Tian G, Wei S, Xu F. 2018. Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. J Food Meas Charact 12(3): 2012-2019. https://doi.org/10.1007/s11694-018-9816-2
  17. Ministry of Food and Drug Safety (MFDS). 2020. Food Code; Available from: http://www.foodsafetykorea.go.kr/foodcode/01_01.jsp.
  18. Noh JH, Kim KJ, Lee BS, Kim SC, Kim IY, Choi SG, Kwon HW, Lee WH, Joung EY, Chung NH, Ko HG. 2020. Cultivation status and breed development of Lentinula edodes cultivar Sanjo 701ho in the sawdust cultivation. J Mushroom 18(3): 179-188. https://doi.org/10.14480/JM.2020.18.3.179
  19. Park YA, Jang YS, Ryoo R, Lee BH, Ka KH. 2019. Breeding and cultural characteristics of newly bred Lentinula edodes strain 'Sanjanghyang'. Kor J Mycol 47: 143-152.
  20. Reis FS, Barros L, Martins A, Ferreira IC. 2012. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol 50(2): 191-197. https://doi.org/10.1016/j.fct.2011.10.056
  21. Salamat S, Shahid M, Najeeb J. 2017. Proximate analysis and simultaneous mineral profiling of five selected wild commercial mushroom as a potential nutraceutical. Int J Chem Stud 5(3): 297-303.
  22. Seo SY, Jang YS, Ryoo R, Ka KH. 2018. Antioxidant properties of water extracts from Lentinula edodes cultivars grown on oak log. Kor J Mycol 46: 51-57. https://doi.org/10.4489/KJM.20180007
  23. Son HK, Jeong YH, Ha JH. 2020. Effects of freeze and hot-air drying methods on contents of physicohemical components and antioxidant activities of Eruca sativa Mill. J Korean Soc Food Sci Nutr 49(7): 759-767. https://doi.org/10.3746/jkfn.2020.49.7.759
  24. Spim SRV, Oliveira BGCC, Leite FG, Gerenutti M, Grotto D. 2017. Effects of Lentinula edodes consumption on biochemical, hematologic and oxidative stress parameters in rats receiving high-fat diet. Eur J Nutr 56: 2255-2264 https://doi.org/10.1007/s00394-016-1266-1
  25. Sung HJ, Pyo SJ, Kim JS, Park JY, Sohn HY. 2018. Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS). J Life Sci 28(11): 1339-1346. https://doi.org/10.5352/JLS.2018.28.11.1339
  26. Woldegiorgis AZ, Abate D, Haki GD, Ziegler GR. 2014. Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem 157, 30-36. https://doi.org/10.1016/j.foodchem.2014.02.014
  27. Yang X, Zhang Y, Kong Y, Zhao J, Sun Y, Huang M. 2019. Comparative analysis of taste compounds in shiitake mushrooms processed by hot-air drying and freeze drying. Int J Food Prop 22(1): 1100-1111. https://doi.org/10.1080/10942912.2019.1628777
  28. Yang JH, Lin HC, Mau JL. 2001. Non-volatile taste components of several commercial mushrooms. Food Chem 72(4): 465-471 https://doi.org/10.1016/S0308-8146(00)00262-4
  29. Yoo YB, Oh MJ, Oh Yl, Shin PG, Jang KY, Kong WS. 2016. Development trend of the mushroom industry. J Mushroom 14(4): 142-154. https://doi.org/10.14480/JM.2016.14.4.142