Abstract
Highly informative heuristics in AI planning can help to a more efficient search a solutions. However, in general, to obtain informative heuristics from planning problem specifications requires a lot of computational effort. To address this problem, we propose a Partial Planning Graph(PPG) and Mixed Heuristics for solving planning problems more efficiently. The PPG is an improved graph to be applied to can find a partial heuristic value for each goal condition from the relaxed planning graph which is a means to get heuristics to solve planning problems. Mixed Heuristics using PPG requires size of each graph is relatively small and less computational effort as a partial plan generated for each goal condition compared to the existing planning graph. Mixed Heuristics using PPG can find partial interactions for each goal conditions in an effective way, then consider them in order to estimate the goal state heuristics. Therefore Mixed Heuristics can not only find interactions for each goal conditions more less computational effort, but also have high accuracy of heuristics than the existing max and additive heuristics. In this paper, we present the PPG and the algorithm for computing Mixed Heuristics, and then explain analysis to accuracy and the efficiency of the Mixed Heuristics.