Acknowledgement
The authors express their deep gratitude to the referee for his/her meticulous reading and valuable suggestions which have definitely improved the paper.
References
- D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
- D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
- A. Badawi and E. Y. Celikel, On 1-absorbing primary ideals of commutative rings, J. Algebra Appl. 19 (2020), no. 6, 2050111, 12 pp. https://doi.org/10.1142/S021949882050111X
- A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014), no. 4, 1163-1173. https://doi.org/10.4134/BKMS.2014.51.4.1163
- C. Beddani and W. Messirdi, 2-prime ideals and their applications, J. Algebra Appl. 15 (2016), no. 3, 1650051, 11 pp. https://doi.org/10.1142/S0219498816500511
- S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43-49. https://doi.org/10.1081/AGB-200034161
- N. Epstein and J. Shapiro, A Dedekind-Mertens theorem for power series rings, Proc. Amer. Math. Soc. 144 (2016), no. 3, 917-924. https://doi.org/10.1090/proc/12661
- R. Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972.
- J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151 https://doi.org/10.2140/pjm.1978.75.137
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- R. Nikandish, M. J. Nikmehr, and A. Yassine, More on the 2-prime ideals of commutative rings, Bull. Korean Math. Soc. 57 (2020), no. 1, 117-126. https://doi.org/10.4134/BKMS.b190094
- R. Y. Sharp, Steps in commutative algebra, second edition, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000.