DOI QR코드

DOI QR Code

LONG-TIME BEHAVIOR OF A FAMILY OF INCOMPRESSIBLE THREE-DIMENSIONAL LERAY-α-LIKE MODELS

  • Anh, Cung The (Department of Mathematics Hanoi National University of Education) ;
  • Thuy, Le Thi (Department of Mathematics Electric Power University) ;
  • Tinh, Le Tran (Department of Natural Sciences Hong Duc University)
  • Received : 2020.05.27
  • Accepted : 2021.07.23
  • Published : 2021.09.30

Abstract

We study the long-term dynamics for a family of incompressible three-dimensional Leray-α-like models that employ the spectral fractional Laplacian operators. This family of equations interpolates between incompressible hyperviscous Navier-Stokes equations and the Leray-α model when varying two nonnegative parameters 𝜃1 and 𝜃2. We prove the existence of a finite-dimensional global attractor for the continuous semigroup associated to these models. We also show that an operator which projects the weak solution of Leray-α-like models into a finite-dimensional space is determining if it annihilates the difference of two "nearby" weak solutions asymptotically, and if it satisfies an approximation inequality.

Keywords

Acknowledgement

This work is supported by Vietnam Ministry of Education and Training under grant number B2021-SPH-15.

References

  1. H. Ali, On a critical Leray-α model of turbulence, Nonlinear Anal. Real World Appl. 14 (2013), no. 3, 1563-1584. https://doi.org/10.1016/j.nonrwa.2012.10.019
  2. H. Ali, Mathematical results for some α models of turbulence with critical and subcritical regularizations, J. Math. Fluid Mech. 15 (2013), no. 2, 303-316. https://doi.org/10.1007/s00021-012-0119-9
  3. D. Barbato, F. Morandin, and M. Romito, Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system, Anal. PDE 7 (2014), no. 8, 2009-2027. https://doi.org/10.2140/apde.2014.7.2009
  4. A. Cheskidov, D. D. Holm, E. Olson, and E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005), no. 2055, 629-649. https://doi.org/10.1098/rspa.2004.1373
  5. B. Cockburn, D. A. Jones, and E. S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp. 66 (1997), no. 219, 1073-1087. https://doi.org/10.1090/S0025-5718-97-00850-8
  6. P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.
  7. P. Constantin, C. Foias, O. P. Manley, and R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150 (1985), 427-440. https://doi.org/10.1017/S0022112085000209
  8. J. Fan, F. Li, and G. Nakamura, Global solutions to the Navier-Stokes-ω and related models with rough initial data, Z. Angew. Math. Phys. 65 (2014), no. 2, 301-314. https://doi.org/10.1007/s00033-013-0332-2
  9. C. Foias, O. P. Manley, R. Temam, and Y. M. Treve, Asymptotic analysis of the NavierStokes equations, Phys. D 9 (1983), no. 1-2, 157-188. https://doi.org/10.1016/0167-2789(83)90297-X
  10. C. Foias and G. Prodi, Sur le comportement global des solutions non-stationnaires des equations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967), 1-34.
  11. C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comp. 43 (1984), no. 167, 117-133. https://doi.org/10.2307/2007402
  12. C. G. Gal and Y. Guo, Inertial manifolds for the hyperviscous Navier-Stokes equations, J. Differential Equations 265 (2018), no. 9, 4335-4374. https://doi.org/10.1016/j.jde.2018.06.011
  13. M. Holst, E. Lunasin, and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci. 20 (2010), no. 5, 523-567. https://doi.org/10.1007/s00332-010-9066-x
  14. M. J. Holst and E. S. Titi, Determining projections and functionals for weak solutions of the Navier-Stokes equations, in Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), 125-138, Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/conm/204/02626
  15. D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993), no. 3, 875-887. https://doi.org/10.1512/iumj.1993.42.42039
  16. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. https://doi.org/10.1002/cpa.3160410704
  17. S. Li, W. Liu, and Y. Xie, Well-posedness of stochastic 3D Leray-α model with fractional dissipation, preprint, arXiv:1805.11939.
  18. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969.
  19. E. Olson and E. S. Titi, Viscosity versus vorticity stretching: global well-posedness for a family of Navier-Stokes-alpha-like models, Nonlinear Anal. 66 (2007), no. 11, 2427-2458. https://doi.org/10.1016/j.na.2006.03.030
  20. N. Pennington, Global solutions to the generalized Leray-alpha equation with mixed dissipation terms, Nonlinear Anal. 136 (2016), 102-116. https://doi.org/10.1016/j.na.2016.02.006
  21. J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. https://doi.org/10.1007/978-94-010-0732-0
  22. T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE 2 (2009), no. 3, 361-366. https://doi.org/10.2140/apde.2009.2.361
  23. R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3
  24. K. Yamazaki, On the global regularity of generalized Leray-alpha type models, Nonlinear Anal. 75 (2012), no. 2, 503-515. https://doi.org/10.1016/j.na.2011.08.051