DOI QR코드

DOI QR Code

Changes in High-temperature Coefficient of Thermal Expansion of Artificial Aging Heat-treated Al-Si-Mg-Cu-(Ti) Alloys

시효 열처리 된 Al-Si-Mg-Cu-(Ti) 합금의 고온 열팽창 계수 변화

  • Received : 2021.09.01
  • Accepted : 2021.09.15
  • Published : 2021.09.30

Abstract

The relationship between precipitation and coefficient of thermal expansion of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments were studied by the thermodynamic analyzer (TMA) and differential scanning calorimetry (DSC). Solution heat treatment of the alloy was carried out at 535℃ for 6 h followed by water quenching, and the samples were artificially aged in the air at 180℃ and 220℃ for 5 h. The coefficient of thermal expansion (CTE) curve showed some residual strain and decreased with increasing aging temperature. The CTE curves changed sharply in the temperature range of 200℃ to 400℃, and the corresponding peak shifted for the aged samples due to the change in the precipitation behavior of the secondary phase. These transformation peaks in the aged sample are related to the volume of the precipitation of the Si phase as determined by DSC analysis. The change in CTE is mainly caused by the precipitation of the Si phase in the Al-Si alloy, and the size of the change occurs simultaneously with the size of the precipitate.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 지역본부대표과제 (과제번호 : JA210005) "스마트모빌리티 핵심 요소 기술 개발(2/6)"의 지원을 받았습니다.

References

  1. C. Jeong : Mater. Trans. 53 (2012) 234-239. https://doi.org/10.2320/matertrans.M2011259
  2. M. Hamzwhei and M. Rashidi : Therm. Eng. Environ. 2006 (2006) 153-158.
  3. H. Ye : J. Mater. Eng. Perform. 12 (2003) 288-297. https://doi.org/10.1361/105994903770343132
  4. C. Chen and R. C. Thomson: Intermetallics. 18 (2010) 1750-1757. https://doi.org/10.1016/j.intermet.2010.05.015
  5. W. Kasprzak, B. Shalchi, and M. Niewczas : J. Alloys Compd. 595 (2014) 67-79. https://doi.org/10.1016/j.jallcom.2013.11.209
  6. S. K. Chaudhury, V. Warke, S. Shankar, and D. Apelian : Metall. Mater. Trans. A. 42 (2011) 3160-3169. https://doi.org/10.1007/s11661-011-0716-x
  7. C. Y. Jeong : Mater. Trans. 54 (2013) 588-594. https://doi.org/10.2320/matertrans.M2012285
  8. R. E. Smallman and R. J. Bishop : Modern Physical Metallurgy and Materials Engineering, Sixth, Butterworth-Heinemann, Oxford (1999).
  9. A. Biswas, D. J. Siegel, and D. N. Seidman : Acta Mater. 75 (2014) 322-336. https://doi.org/10.1016/j.actamat.2014.05.001
  10. E. Sjolander and S. Seifeddine : J. Mater. Process. Technol. 210 (2010) 1249-1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020
  11. F. Lasagni, B. Mingler, M. Dumont, and H. P. Degischer : Mater. Sci. Eng. A. 480 (2008) 383-391. https://doi.org/10.1016/j.msea.2007.07.008
  12. R. X. Li, R. D. Li, Y. H. Zhao, L. Z. He, C. X. Li, H. R. Guan, and Z. Q. Hu : Mater. Lett. 58 (2004) 2096-2101. https://doi.org/10.1016/j.matlet.2003.12.027
  13. E. Sjolander and S. Seifeddine : Mater. Sci. Eng. A. 528 (2011) 7402-7409. https://doi.org/10.1016/j.msea.2011.06.036
  14. Joseph R. Davis : Aluminum and Aluminum alloys, ASM International, Ohio (1993) 324.
  15. P. van Mourik, T. H. de Keijser, and E. J. Mittemeijer : Scr. Metall. 21 (1987) 381-385. https://doi.org/10.1016/0036-9748(87)90233-X
  16. F. Lasagni, M. Dumont, C. Salamida, J. A. Acuna, and H. P. Degischer : Int. J. Mater. Res. 100 (2009) 1005-1013. https://doi.org/10.3139/146.110145
  17. N. Afify, A. Gaber, M. S. Mostafa, and G. Abbady : J. Alloys Compd. 462 (2008).
  18. M. van Rooyen, and E. J. Mittemeijer : Metall. Trans. A. 20 (1989) 1207-1214. https://doi.org/10.1007/BF02647402