DOI QR코드

DOI QR Code

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature

HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화

  • Gwon, J.U. (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, M.S. (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Jang, T.H. (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Bae, M.K. (Department of Nano Fusion Technology, Pusan National University) ;
  • Kim, S.W. (Adamant Namiki Precision Jewel Co., Ltd) ;
  • Kim, T.G. (Department of Nanomechatronics Engineering, Pusan National University)
  • 권진욱 (부산대학교 나노메카트로닉스공학과) ;
  • 김민수 (부산대학교 나노메카트로닉스공학과) ;
  • 장태환 (부산대학교 나노메카트로닉스공학과) ;
  • 배문기 (부산대학교 나노융합기술학과) ;
  • 김성우 ;
  • 김태규 (부산대학교 나노메카트로닉스공학과)
  • Received : 2021.09.09
  • Accepted : 2021.09.24
  • Published : 2021.09.30

Abstract

Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Keywords

Acknowledgement

본 연구는 Adamant Namiki Precision Jewel CO. Ltd.(JAPAN)의 연구비를 지원 받아 수행하였습니다. 이에 감사드립니다.

References

  1. A. Gicquel, K. Hassouni, F. Silva, and J. Achard : Curr. Appl. Phys., 1 (2001) 479. https://doi.org/10.1016/S1567-1739(01)00061-X
  2. Wang, Tao, et al. : Diamond and Related Materials 13(1) (2004) 6-13. https://doi.org/10.1016/j.diamond.2003.08.014
  3. Yu. M. Tairov : Materials Science and Engineering: B, 29 (1995), 83-89. https://doi.org/10.1016/0921-5107(94)04048-9
  4. G. E. Harlow : American Museum of Natural History, (1998), 214-272.
  5. M. S. Kim, M. K. Bae, S. -W. Kim, and T. G. Kim : J. of the Korean Society for Heat Treatment, 33(1) (2020).
  6. S. Ohmagari, H. Yamada, H. Umezawa, A. Chayahara, T. Teraji, and S. Shikata : Diamond and Related Materials, 48 (2014), 19-23. https://doi.org/10.1016/j.diamond.2014.06.001
  7. L. Fengnan, Z. Jingwen, W. Xiaoliang, Z. Minghui, and W. Hongxing, Crystals 7 (2017) 114. https://doi.org/10.3390/cryst7040114
  8. C. J. Chu, M. P. D'Evelyn, R. H. Hauge, and J. L. Margrave : Journal of Materials Research, 5 (1990) 2405-2413. https://doi.org/10.1557/JMR.1990.2405
  9. G. H. Song, J. H. Yoon, H. S. Kim, C. Sun, R. F. Huang, L. S. Wen : Materials Letters, 56 (2002) 832-837. https://doi.org/10.1016/S0167-577X(02)00623-7
  10. S. J. Harris : Applied Physics Letters 56 (1990), 2298-2300. https://doi.org/10.1063/1.102946
  11. M . Frenklach and K. E. Spear : Journal of M aterials Research, 3 (1988) 133-140. https://doi.org/10.1557/JMR.1988.0133
  12. H. Aida, K. Koyama, K. Ikejiri, and S. W. Kim : United State Patent, US20160237592A1 (2016).