과제정보
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agricultural Machinery/Equipment Localization Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321055-05) and previous support from the USDA and NSF from grants to AJA.
참고문헌
- Agrios, G. 2005. Plant pathology. 5th ed. Academic Press, Amsterdam, The Netherlands. 953 pp.
- Ahammed, G. J., Wu, M., Wang, Y., Yan, Y., Mao, Q., Ren, J., Ma, R., Liu, A. and Chen, S. 2020. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci. Hortic. 265:109205. https://doi.org/10.1016/j.scienta.2020.109205
- Aranega-Bou, P., de la O. Leyva, M., Finiti, I., Garcia-Agustin, P. and Gonzalez-Bosch, C. 2014. Priming of plant resistance by natural compounds: hexanoic acid as a model. Front. Plant Sci. 5:488.
- Arnao, M. B. 2014. Phytomelatonin: discovery, content, and role in plants. Adv. Bot. 2014:815769.
- Arnao, M. B. and Hernandez-Ruiz, J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 19:789-797. https://doi.org/10.1016/j.tplants.2014.07.006
- Arnao, M. B. and Hernandez-Ruiz, J. 2018. Melatonin in its relationship to plant hormones. Ann. Bot. 121:195-207. https://doi.org/10.1093/aob/mcx114
- Arnao, M. B. and Hernandez-Ruiz, J. 2019a. Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci. 24:38-48. https://doi.org/10.1016/j.tplants.2018.10.010
- Arnao, M. B. and Hernandez-Ruiz, J. 2019b. Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network. Melatonin Res. 2:152-168. https://doi.org/10.32794/11250036
- Arnao, M. B. and Hernandez-Ruiz, J. 2020a. Is phytomelatonin a new plant hormone? Agronomy 10:95. https://doi.org/10.3390/agronomy10010095
- Arnao, M. B. and Hernandez-Ruiz, J. 2020b. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol. 23:7-19.
- Back, K., Tan, D.-X. and Reiter, R. J. 2016. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 61:426-437. https://doi.org/10.1111/jpi.12364
- Bektas, Y. and Eulgem, T. 2014. Synthetic plant defense elicitors. Front. Plant Sci. 5:804. https://doi.org/10.3389/fpls.2014.00804
- Buttar, Z. A., Wu, S. N., Arnao, M. B., Wang, C., Ullah, I. and Wang, C. 2020. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809. https://doi.org/10.3390/plants9070809
- Caarls, L., Pieterse, C. M. and Van Wees, S. C. 2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6:170. https://doi.org/10.3389/fpls.2015.00170
- Cascales-Minana, B. and Cleal, C. J. 2014. The plant fossil record reflects just two great extinction events. Terra Nova 26:195-200. https://doi.org/10.1111/ter.12086
- Conrath, U. 2009. Chapter 9. Priming of induced plant defense responses. In: Advances in botanical research, ed. by L. C. V. Loon, pp. 361-395. Academic Press, Burlington, MA, USA.
- Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97-119. https://doi.org/10.1146/annurev-phyto-080614-120132
- Crespo-Salvador, O., Escamilla-Aguilar, M., Lopez-Cruz, J., Lopez-Rodas, G. and Gonzalez-Bosch, C. 2018. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Plant Cell Rep. 37:153-166. https://doi.org/10.1007/s00299-017-2218-9
- da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M. C., do Amaral, A. M., Bertolini, M. C., Camargo, L. E. A., Camarotte, G., Cannavan, F., Cardozo, J., Chambergo, F., Ciapina, L. P., Cicarelli, R. M. B., Coutinho, L. L., Cursino-Santos, J. R., El-Dorry, H., Faria, J. B., Ferreira, A. J. S., Ferreira, R. C. C., Ferro, M. I. T., Formighieri, E. F., Franco, M. C., Greggio, C. C., Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P., Lemos, E. G. M., Lemos, M. V. F., Locali, E. C., Machado, M. A., Madeira, A. M. B. N., Martinez-Rossi, N. M., Martins, E. C., Meidanis, J., Menck, C. F. M., Miyaki, C. Y., Moon, D. H., Moreira, L. M., Novo, M. T. M., Okura, V. K., Oliveira, M. C., Oliveira, V. R., Pereira, H. A., Rossi, A., Sena, J. A. D., C. Silva, S., de Souza, R. F., Spinola, L. A. F., Takita, M. A., Tamura, R. E., Teixeira, E. C., Tezza, R. I. D., Trindade dos Santos, M., Truffi, D., Tsai, S. M., White, F. F., Setubal, J. C. and Kitajima, J. P. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463. https://doi.org/10.1038/417459a
- Dai, L., Li, J., Harmens, H., Zheng, X. and Zhang, C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol. Biochem. 149:86-95. https://doi.org/10.1016/j.plaphy.2020.01.039
- Debnath, B., Islam, W., Li, M., Sun, Y., Lu, X., Mitra, S., Hussain, M., Liu, S. and Qiu, D. 2019. Melatonin mediates enhancement of stress tolerance in plants. Int. J. Mol. Sci. 20:1040. https://doi.org/10.3390/ijms20051040
- Ding, B. and Wang, G.-L. 2015. Chromatin versus pathogens: the function of epigenetics in plant immunity. Front. Plant Sci. 6:675. https://doi.org/10.3389/fpls.2015.00675
- Djami-Tchatchou, A. T., Ncube, E. N., Steenkamp, P. A. and Dubery, I. A. 2017. Similar, but different: structurally related azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant Biol. 17:227. https://doi.org/10.1186/s12870-017-1157-5
- Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664. https://doi.org/10.1146/annurev.arplant.50.1.641
- Fernandez-Crespo, E., Navarro, J. A., Serra-Soriano, M., Finiti, I., Garcia-Agustin, P., Pallas, V. and Gonzalez-Bosch, C. 2017. Hexanoic acid treatment prevents systemic MNSV movement in Cucumis melo plants by priming callose deposition correlating SA and OPDA accumulation. Front. Plant Sci. 8:1793. https://doi.org/10.3389/fpls.2017.01793
- Finiti, I., de la O. Leyva, M., Vicedo, B., Gomez-Pastor, R., Lopez-Cruz, J., Garcia-Agustin, P., Real, M. D. and GonzalezBosch, C. 2014. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Mol. Plant Pathol. 15:550-562. https://doi.org/10.1111/mpp.12112
- Gago-Zachert, S., Schuck, J., Weinholdt, C., Knoblich, M., Pantaleo, V., Grosse, I., Gursinsky, T. and Behrens, S.-E. 2019. Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro. Nucleic Acids Res. 47:9343-9357. https://doi.org/10.1093/nar/gkz678
- Gomez-Ariza, J., Campo, S., Rufat, M., Estopa, M., Messeguer, J., San Segundo, B. and Coca, M. 2007. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant-Microbe Interact. 20:832-842. https://doi.org/10.1094/MPMI-20-7-0832
- Guerriero, G., Stokes, I. and Exley, C. 2018. Is callose required for silicification in plants? Biol. Lett. 14:20180338. https://doi.org/10.1098/rsbl.2018.0338
- Han, W., He, P., Shao, L. and Lu, F. 2018. Metabolic interactions of a chain elongation microbiome. Appl. Environ. Microbiol. 84:e01614-18.
- Hardeland, R. 2016. Melatonin in plants: diversity of levels and multiplicity of functions. Front. Plant Sci. 7:198. https://doi.org/10.3389/fpls.2016.00198
- Hasan, M. K., Liu, C.-X., Pan, Y.-T., Ahammed, G. J., Qi, Z.- Y. and Zhou, J. 2018. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci. Rep. 8:10182. https://doi.org/10.1038/s41598-018-28561-0
- Hernandez-Ruiz, J. and Arnao, M. B. 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 8:33. https://doi.org/10.3390/agronomy8040033
- Hu, Y., Dong, Q. and Yu, D. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci. 185-186:288-297. https://doi.org/10.1016/j.plantsci.2011.12.003
- Isshiki, A., Akimitsu, K., Yamamoto, M. and Yamamoto, H. 2001. Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol. Plant-Microbe Interact. 14:749-757. https://doi.org/10.1094/MPMI.2001.14.6.749
- Jaskiewicz, M., Conrath, U. and Peterhansel, C. 2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12:50-55. https://doi.org/10.1038/embor.2010.186
- Kauss, H., Seehaus, K., Franke, R., Gilbert, S., Dietrich, R. A. and Kroger, N. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J. 33:87-95. https://doi.org/10.1046/j.1365-313X.2003.01606.x
- Kong, H. G., Song, G. C., Sim, H.-J. and Ryu, C.-M. 2020. Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME J. 15:397-408.
- Kroumova, A. B., Xie, Z. and Wagner, G. J. 1994. A pathway for the biosynthesis of straight and branched, odd- and evenlength, medium-chain fatty acids in plants. Proc. Natl. Acad. Sci. U. S. A. 91:11437-11441. https://doi.org/10.1073/pnas.91.24.11437
- Kuc, J. 1982. Induced immunity to plant disease. BioScience 32:854-860. https://doi.org/10.2307/1309008
- Kunkel, B. N. and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331. https://doi.org/10.1016/S1369-5266(02)00275-3
- Laura, B., Silvia, P., Francesca, F., Benedetta, S. and Carla, C. 2018. Epigenetic control of defense genes following MeJAinduced priming in rice (O. sativa). J. Plant Physiol. 228:166-177. https://doi.org/10.1016/j.jplph.2018.06.007
- Lee, H. Y. and Back, K. 2017. Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J. Pineal Res. 62:e12379. https://doi.org/10.1111/jpi.12379
- Lee, H. Y., Byeon, Y. and Back, K. 2014. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res. 57:262-268. https://doi.org/10.1111/jpi.12165
- Li, H., Chang, J., Zheng, J., Dong, Y., Liu, Q., Yang, X., Wei, C., Zhang, Y., Ma, J. and Zhang, X. 2017. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport. Sci. Rep. 7:40858. https://doi.org/10.1038/srep40858
- Li, S., Xu, Y., Bi, Y., Zhang, B., Shen, S., Jiang, T. and Zheng, X. 2019. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharvest Biol. Technol. 157:110962. https://doi.org/10.1016/j.postharvbio.2019.110962
- Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X. and Xia, H. 2018. Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front. Plant Sci. 9:426. https://doi.org/10.3389/fpls.2018.00426
- Liu, C., Chen, L., Zhao, R., Li, R., Zhang, S., Yu, W., Sheng, J. and Shen, L. 2019. Melatonin induces disease resistance to Botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J. Agric. Food Chem. 67:6116-6124. https://doi.org/10.1021/acs.jafc.9b00058
- Llorens, E., Camanes, G., Lapena, L. and Garcia-Agustin, P. 2016. Priming by hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles. Front. Plant Sci. 7:495.
- Llorens, E., Fernandez-Crespo, E., Vicedo, B., Lapena, L. and Garcia-Agustin, P. 2013. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease. J. Plant Physiol. 170:146-154. https://doi.org/10.1016/j.jplph.2012.09.018
- Llorens, E., Vicedo, B., Lopez, M. M., Lapena, L., Graham, J. H. and Garcia-Agustin, P. 2015. Induced resistance in sweet orange against Xanthomonas citri subsp. citri by hexanoic acid. Crop Prot. 74:77-84. https://doi.org/10.1016/j.cropro.2015.04.008
- Lopez-Galiano, M. J., Ruiz-Arroyo, V. M., Fernandez-Crespo, E., Rausell, C., Real, M. D., Garcia-Agustin, P., Gonzalez-Bosch, C. and Garcia-Robles, I. 2017. Oxylipin mediated stress response of a miraculin-like protease inhibitor in hexanoic acid primed eggplant plants infested by Colorado potato beetle. J. Plant Physiol. 215:59-64. https://doi.org/10.1016/j.jplph.2017.04.013
- Luna, E. 2016. Using green vaccination to brighten the agronomic future. Outlooks Pest Manag. 27:136-140. https://doi.org/10.1564/v27_jun_10
- Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V. and Ton, J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844-853. https://doi.org/10.1104/pp.111.187468
- Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M. and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822. https://doi.org/10.1016/j.tplants.2016.07.009
- Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R. and Rivero, R. M. 2018. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535. https://doi.org/10.3390/molecules23030535
- Mauch-Mani, B., Baccelli, I., Luna, E. and Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485-512. https://doi.org/10.1146/annurev-arplant-042916-041132
- McElwain, J. C. and Punyasena, S. W. 2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22:548-557. https://doi.org/10.1016/j.tree.2007.09.003
- Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elkelish, A., Arnao, M. B., Li, L. and Ai, S. 2019. Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10:54. https://doi.org/10.3390/biom10010054
- Moustafa-Farag, M., Elkelish, A., Dafea, M., Khan, M., Arnao, M. B., Abdelhamid, M. T., El-Ezz, A. A., Almoneafy, A., Mahmoud, A., Awad, M., Li, L., Wang, Y., Hasanuzzaman, M. and Ai, S. 2020. Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules 25:5359. https://doi.org/10.3390/molecules25225359
- Niehl, A., Soininen, M., Poranen, M. M. and Heinlein, M. 2018. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J. 16:1679-1687. https://doi.org/10.1111/pbi.12904
- Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831. https://doi.org/10.2307/3870232
- Park, S.-W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., Andersson, M. X., Kittle, J. D., Ambavaram, M. M. R., Luan, S., Esker, A. R., Tholl, D., Cimini, D., Ellerstrom, M., Coaker, G., Mitchell, T. K., Pereira, A., Dietz, K.-J. and Lawrence, C. B. 2013. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. U. S. A. 110:9559-9564. https://doi.org/10.1073/pnas.1218872110
- Quintana-Rodriguez, E., Duran-Flores, D., Heil, M. and Camacho-Coronel, X. 2018. Damage-associated molecular patterns (DAMPs) as future plant vaccines that protect crops from pests. Sci. Hortic. 237:207-220. https://doi.org/10.1016/j.scienta.2018.03.026
- Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M. and Hirt, H. 2018. Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci. 23:833-844. https://doi.org/10.1016/j.tplants.2018.06.004
- Riemann, M., Dhakarey, R., Hazman, M., Miro, B., Kohli, A. and Nick, P. 2015. Exploring jasmonates in the hormonal network of drought and salinity responses. Front. Plant Sci. 6:1077. https://doi.org/10.3389/fpls.2015.01077
- Ryan, C. A. and Farmer, E. E. 1991. Oligosaccharide signals in plants: a current assessment. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:651-674. https://doi.org/10.1146/annurev.pp.42.060191.003251
- Scalschi, L., Vicedo, B., Camanes, G., Fernandez-Crespo, E., Lapena, L., Gonzalez-Bosch, C. and Garcia-Agustin, P. 2013. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Mol. Plant Pathol. 14:342-355. https://doi.org/10.1111/mpp.12010
- Sharif, R., Xie, C., Zhang, H., Arnao, M. B., Ali, M., Ali, Q., Muhammad, I., Shalmani, A., Nawaz, M. A., Chen, P. and Li, Y. 2018. Melatonin and its effects on plant systems. Molecules 23:2352. https://doi.org/10.3390/molecules23092352
- Sharma, A. and Zheng, B. 2019. Melatonin mediated regulation of drought stress: physiological and molecular aspects. Plants 8:190. https://doi.org/10.3390/plants8070190
- Shi, H., Chen, K., Wei, Y. and He, C. 2016. Fundamental issues of melatonin-mediated stress signaling in plants. Front. Plant Sci. 7:1124.
- Siddiqui, M. H., Alamri, S., Al-Khaishany, M. Y., Khan, M. N., Al-Amri, A., Ali, H. M., Alaraidh, I. A. and Alsahli, A. A. 2019. Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int. J. Mol. Sci. 20:353. https://doi.org/10.3390/ijms20020353
- Simlat, M., Ptak, A., Skrzypek, E., Warchol, M., Moranska, E. and Piorkowska, E. 2018. Melatonin significantly influences seed germination and seedling growth of Stevia rebaudiana Bertoni. PeerJ 6:e5009. https://doi.org/10.7717/peerj.5009
- Soukup, M., Martinka, M., Bosnic, D., Caplovicova, M., Elbaum, R. and Lux, A. 2017. Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Ann. Bot. 120:739-753. https://doi.org/10.1093/aob/mcx060
- Tan, D.-X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z. and Reiter, R. J. 2015. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886-188906. https://doi.org/10.3390/molecules201018886
- Tan, D.-X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D. and Reiter, R. J. 2013. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J. Pineal Res. 54:127-138. https://doi.org/10.1111/jpi.12026
- Tan, D.-X. and Reiter, R. J. 2020. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J. Exp. Bot. 71:4677-4689. https://doi.org/10.1093/jxb/eraa235
- Tauzin, A. S. and Giardina, T. 2014. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci. 5:293.
- Tepper, C. S. and Anderson, A. J. 1990. Interactions between pectic fragments and extracellular components from the fungal pathogen, Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 36:147-158. https://doi.org/10.1016/0885-5765(90)90103-5
- Thaler, J. S., Fidantsef, A. L. and Bostock, R. M. 2002. Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28:1131-1159. https://doi.org/10.1023/A:1016225515936
- Ton, J. and Mauch-Mani, B. 2004. Beta-amino-butyric acidinduced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38:119-130. https://doi.org/10.1111/j.1365-313X.2004.02028.x
- Wan, J., Zhang, P., Wang, R., Sun, L., Ju, Q. and Xu, J. 2018. Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biol. 18:362. https://doi.org/10.1186/s12870-018-1548-2
- Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Gui, Y., Qi, Y., Jiang, C. and Guo, J.-H. 2019. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front. Microbiol. 10:98. https://doi.org/10.3389/fmicb.2019.00098
- Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., Fu, C. and Ren, S. 2014. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS ONE 9:e93462. https://doi.org/10.1371/journal.pone.0093462
- Wei, J., Li, D.-X., Zhang, J.-R., Shan, C., Rengel, Z., Song, Z.- B. and Chen, Q. 2018. Phytomelatonin receptor PMTR1- mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 65:e12500. https://doi.org/10.1111/jpi.12500
- Wingler, A. 2018. Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol. 176:1075-1084. https://doi.org/10.1104/pp.17.01229
- Yang, X. L., Xu, H., Li, D., Gao, X., Li, T. L. and Wang, R. 2018. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56:884-892. https://doi.org/10.1007/s11099-017-0748-6
- Yin, H., Zhao, X. and Du, Y. 2010. Oligochitosan: a plant diseases vaccine-a review. Carbohydr. Polym. 82:1-8. https://doi.org/10.1016/j.carbpol.2010.03.066
- Zdor, R. E. and Anderson, A. J. 1992. Influence of root colonizing bacteria on the defense responses of bean. Plant Soil 140:99-107. https://doi.org/10.1007/BF00012811
- Zhang, N., Zhang, H.-J., Zhao, B., Sun, Q.-Q., Cao, Y.-Y., Li, R., Wu, X.-X., Weeda, S., Li, L., Ren, S., Reiter, R. J. and Guo, Y.-D. 2014. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 56:39-50. https://doi.org/10.1111/jpi.12095
- Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R. and Reiter, R. J. 2019. Melatonin synthesis and function: evolutionary history in animals and plants. Front. Endocrinol. 10:249. https://doi.org/10.3389/fendo.2019.00249
- Zhao, H., Xu, L., Su, T., Jiang, Y., Hu, L. and Ma, F. 2015. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J. Pineal Res. 59:109-119. https://doi.org/10.1111/jpi.12245