DOI QR코드

DOI QR Code

The effects of pulsed ultrasound and continued ultrasound intervention before an exercise on maximal voluntary isometric contraction and range of motion of exercise-induced muscle damage

운동 전 적용된 지속초음파와 맥동초음파가 운동 유발성 근육 손상의 최대등척성근력과 관절가동범위에 미치는 효과

  • 김하늘 (서울 응암 리드힐병원 물리치료실) ;
  • 전재근 (한려대학교 물리치료학과) ;
  • 신성필 (한려대학교 물리치료학과)
  • Received : 2021.05.10
  • Accepted : 2021.06.28
  • Published : 2021.09.30

Abstract

Background: The purpose of this study was to investigate the effects of pulsed-ultrasound intervention and continued-ultrasound on the MVIC (maximal voluntary isometric contraction) and active ROM (range of motion) recovery of before EIMD (exercise-induced muscle damage). Design: Randomized controlled trial. Methods: Thirty subjects who are student in their 20s at a university participated in this study, these subjects were assigned into three groups, a control group (n=10), experiment group I (n=10) and experiment group II (n=10). The subjects in experimental group were intervened by pulsed-ultrasound and continued-ultrasound, while ones on control group weren't by any intervention after induced EIMD. Results: First, In comparison of the MVIC, in the among group comparison, the MVIC of continued-ultrasound group was significantly larger than those of other groups (p<.005). Second, In the among group comparison, the active extension angle of continued-ultrasound group was significantly smaller than those of other groups (p<.005). Third, In the among group comparison, the active flexion angle of continued-ultrasound group was significantly lager than those of other groups (p<.05). Conclusion: The above results revealed that the continued-ultrasound intervention before an exercise had a significantly improve of muscle function after EIMD. Therefore we can consider the continued ultrasound as a considerable intervention method to prevent or reduce an exercise injury.

Keywords

References

  1. 고형우. 진동자극이 지연성 근육통의 근 기능 회복에 미치는 영향[석사학위논문] 동신대학교; 2011.
  2. 김근조, 이규리, 정병옥, 등. 자연치유와 경피신경전기자극치료, 그리고 냉치료가 지연성근육통이 유발된 위팔두 갈래근의 통증과 근력 및 근활성도에 미치는 영향. 한국산학기술학회논문지 2009;10(12):3902-9. https://doi.org/10.5762/KAIS.2009.10.12.3902
  3. 김승환. 신장성 운동 후 키네시오 테이핑 적용이 근육 손상 지표의 변화에 미치는 영향[석사학위논문].국민대학교 교육대학원; 2012.
  4. 김지윤, 전재근, 오세민. 테라테인먼트적 진동 자극이 위팔두갈래근의 최대등척성근력과 관절가동범위에 미치는 영향. 한국엔터테인먼트산업학회논문지 2018;12(4):295-304.
  5. 김현진, 김명훈. 케틀벨 운동과 초음파 치료가 20대 성인의 체질량지수, 체지방률에 미치는 영향. 대한물리치료과학회지 2018;25(2):1-6. https://doi.org/10.26862/jkpts.2018.09.25.2.1
  6. 문현주, 서현규, 공원태. 측두하악관절장애 환자에서 연속초음파와 맥동초음파 적용이 통증과 관절가동범위에 미치는 효과. 대한정형도수물리치료학회지 2007;13(2):1-11.
  7. 박래준. 기구를 이용한 물리치료학. 서울: 영문출판사; 2001.
  8. 백수정, 이미애, 김진상, 등. 경피신경전기자극과 초음파가 전기생리학적 반응에 미치는 영향. 대한물리치료학회지(JKPT) 2000;12(1):49-56.
  9. 송현호, 김주영, 이철현, 등. 운동유발성 근육 손상 후 진동운동 적용이 근육 손상 지표에 미치는 영향. 코칭능력개발지 2011;13(1):179-88.
  10. 오민영. 초음파가 혈류량 및 피부온도에 미치는 영향[석사학위논문].대구대학교; 2004.
  11. 윤정권, 이주형. 신장성 운동 후 초음파 치료가 지연성 근육통증에 미치는 영향. 체육과학연구 2006;17(3):58-66.
  12. 이수영. 유지-이완 주동근 수축기법과 경피신경전기자극의 지연성 근육통 치료 효과[박사학위논문]. 연세대학교;2006.
  13. 장현정, 남형천, 주관절 외상과염 주부에서 미세전류에 의한 신경근 자극 치료가 손목 신전근력에 미치는 영향. 대한스포츠물리치료학회지 2005;1(1):101-5.
  14. 정재훈, 김경수. 초음파 적용방법에 따른 조직온도변화 연구. 대한재활의학회지 1993;17(1):76-80.
  15. 정한석, 함주현, 최성범, 등. 카이로프랙틱, 초음파, 테이핑치료가 SCM 근육의 회전가동범위에 미치는 영향. 한국웰니스학회지 2011;6(3):253-64.
  16. 조남정, 송승혁. 지연성 근육통에 대한 미세전류자극치료가 통증과 CK에 미치는 영향. 대한통합의학회지 2014;2(3):31-7. https://doi.org/10.15268/ksim.2014.2.3.031
  17. 조승봉, 박미영, 원지선, 등. 초음파 치료와 정적 스트레칭이 뒤넙다리근의 유연성과 정적균형에 미치는 영향. 대한물리치료과학회지 2019;26(1):45-53. https://doi.org/10.26862/jkpts.2019.06.26.1.45
  18. 최효정, 김성수. 미세전류치료기 전극 종류에 따른 효능 비교. 한방재활의학과학회지 2013;23(3):107-16.
  19. 한종만. 초음파와 근막 이완술이 긴장형 두통환자의 뇌혈류 속도에 미치는 영향[석사학위논문].대구대학교; 2002.
  20. Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med 1991;12(3): 184-207. https://doi.org/10.2165/00007256-199112030-00004
  21. Blonna D, Zarkadas PC, Fitzsimmons JS, et al. Accuracy and inter-observer reliability of visual estimation compared to clinical goniometry of the elbow. Knee Surg Sports Traumatol Arthrosc 2012;20(7):1378-85. https://doi.org/10.1007/s00167-011-1720-9
  22. Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness : treatment strategies and performance factors. Sports Med 2003;33(2):145-64. https://doi.org/10.2165/00007256-200333020-00005
  23. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52-69.
  24. Clarkson PM, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol 1988;65(1):1-6. https://doi.org/10.1152/jappl.1988.65.1.1
  25. Close GL, Ashton T, McArdle A, et al. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp Biochem Physiol A Mol Integr Physiol 2005;142(3):257-66. https://doi.org/10.1016/j.cbpa.2005.08.005
  26. Connolly DA, Sayers SP, McHugh MP. Treatment and prevention of delayed onset muscle soreness. J Strength Cond Res 2003;17(1):197-208. https://doi.org/10.1519/1533-4287(2003)017<0197:TAPODO>2.0.CO;2
  27. Gibson W, Arendt-Nielsen L, Graven-Nielsen T. Delayed onset muscle soreness at tendon-bone junction and muscle tissue is associated with facilitated referred pain. Exp Brain Res 2006;174(2):351-60. https://doi.org/10.1007/s00221-006-0466-y
  28. Griffin JW, Tooms RE, Mendius RA, et al. Efficacy of high voltage pulsed current for healing of pressure ulcers in patients with spinal cord injury. Phys Ther 1991;71(6):433-42. https://doi.org/10.1093/ptj/71.6.433
  29. Halle JS, Scoville CR, Greathouse DG. Ultrasound's effect on the conduction latency of the superficial radial nerve in man. Phys Ther. 1981;61(3):345-50. https://doi.org/10.1093/ptj/61.3.345
  30. Hennessey WJ, Falco FJ, Braddom RL. Median and ulnar nerve conduction studies: normative data for young adults. Arch Phys Med Rehabil 1994;75(3):259-64. https://doi.org/10.1016/0003-9993(94)90025-6
  31. Huang MH, Lin YS, Lee CL, et al. Use of ultrasound to increase effectiveness of isokinetic exercise for knee osteoarthritis. Arch Phys Med Rehabil 2005;86(8):1545-51. https://doi.org/10.1016/j.apmr.2005.02.007
  32. Hubal MJ, Rubinstein SR, Clarkson PM. Mechanisms of variability in strength loss after muscle-lengthening actions. Med Sci Sports Exerc 2007;39(3):461-8. https://doi.org/10.1249/01.mss.0000247007.19127.da
  33. Jia XL, Chen WZ, Zhou K, et al. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Chin J Traumatol 2005;8(3):175-8.
  34. Nosaka K, Aldayel A, Jubeau M, et al. Muscle damage induced by electrical stimulation. Eur J Appl Physiol 2011;111(10):2427-37. https://doi.org/10.1007/s00421-011-2086-x
  35. McNeil PL, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol. 1992;140(5):1097-109.
  36. Cleary MA, Sweeney LA, Kendrick ZV, et al. Dehydration and symptoms of delayed-onset muscle soreness in hyperthermic males. J Athl Train 2005;40(4):288-97.
  37. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 2005;33(2):98-104. https://doi.org/10.1097/00003677-200504000-00007
  38. Rowsell GJ, Coutts AJ, Reaburn P, et al. Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J Sports Sci 2009;27(6):565-73. https://doi.org/10.1080/02640410802603855
  39. Smith LL. Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc 1991;23(5):542-51.
  40. Symons TB, Clasey JL, Gater DR, et al. Effects of deep heat as a preventative mechanism on delayed onset muscle soreness. J Strength Cond Res 2004;18(1):155-61. https://doi.org/10.1519/1533-4287(2004)018<0155:EODHAA>2.0.CO;2
  41. Warren GL, Summan M, Gao X, et al. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 2007;582(Pt 2):825-41. https://doi.org/10.1113/jphysiol.2007.132373
  42. Zainuddin Z, Hope P, Newton M, et al. Effects of partial immobilization after eccentric exercise on recovery from muscle damage. J Athl Train 2005;40(3):197-202.