DOI QR코드

DOI QR Code

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases

MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례

  • Received : 2021.07.03
  • Accepted : 2021.07.30
  • Published : 2021.09.30

Abstract

Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

석탄화력발전소로부터 배출되는 질소산화물(NO + NO2 = NOx)은 NH3를 환원제로 사용하여 선택적으로 환원시키는 SCR(selective catalytic reduction) 탈질촉매시스템에서 효과적으로 제거될 수 있다. 이 SCR 촉매공정에서 원소수은을 산화시켜 후속공정에서 제거하기 위하여 수많은 산화촉매들이 제안되었으나 MW급 석탄연소시설이나 상업운전 중인 석탄발전소 탈질시스템에서 원소수은 산화성능을 실증한 사례들은 매우 드물다. 실배가스에서 수행한 실증연구들을 심층적으로 조사·분석한 바는 기존 SCR 탈질촉매뿐 아니라 수은산화능을 향상시킨 신촉매의 원소수은 산화활성은 석탄연소, 실배가스 등의 특성에 따라 매우 복잡한 양상을 띤다는 점이다. 그럼에도 불구하고 석탄연소시설에 사용하는 원료탄, 탈질시스템과 실증조건이 원소수은 산화능에 가장 큰 영향을 미치는 핵심 요소이다. 특히, 원료탄에 함유된 할로겐 함량은 탈질촉매공정의 중요성을 넘어서는 것으로 보여진다. 석탄에 존재하는 대표적인 할로겐 성분은 Cl, Br과 F이고 이들 중에서 Cl이 지배적이며 다른 할로겐계처럼 염으로 존재하지만 석탄연소 과정에서 미량의 Cl2와 함께 HCl로 전환된다. 이러한 HCl은 원소수은 산화에 있어서 강력한 산화제로 작용하지만 석탄마다 Cl 함량이 다르기 때문에 HCl 농도 또한 강하게 의존한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20193410100050)을 받아 수행되었다.

References

  1. Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., and Lu, J., "A Review on Mercury in Coal Combustion Process: Content and Occurrence Forms in Coal, Transformation, Sampling Methods, Emission and Control Technologies," Prog. Energy Combust. Sci., 73, 26-64 (2019). https://doi.org/10.1016/j.pecs.2019.02.001
  2. Zhao, L., Li, C., Zhang, X., Zeng, G., Zhang, J., and Xie, Y., "A Review on Oxidation of Elemental Mercury from Coal-Fired Flue Gas with Selective Catalytic Reduction Catalysts," Catal. Sci. Technol., 5, 3459-3472 (2015). https://doi.org/10.1039/C5CY00219B
  3. Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Guo, Z., and Wang, Q., "A Critical Review on the Heterogeneous Catalytic Oxidation of Elemental Mercury in Flue Gases," Environ. Sci. Technol., 47(19), 10813-10823 (2013). https://doi.org/10.1021/es402495h
  4. Dranga, B.-A., Lazar, L., and Koeser, H., "Oxidation Catalysts for Elemental Mercury in Flue Gases - A Review," Catalysts, 2(1), 139-170 (2012). https://doi.org/10.3390/catal2010139
  5. Reddy, B. M., Durgasri, N., Kumar, T. V., and Bhargava, S. K., "Abatement of Gas-Phase Mercury - Recent Developments," Catal. Rev., 54(3), 344-398 (2012). https://doi.org/10.1080/01614940.2012.650966
  6. Lopez-Anton, M. A., Fernandez-Miranda, N., and Martinez-Tarazona, M. R., "The Application of Regenerable Sorbents for Mercury Capture in Gas Phase," Environ. Sci. Pollut. Res., 23(24), 24495-24503 (2016). https://doi.org/10.1007/s11356-016-7534-z
  7. Kim, M. H., "Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts," Clean Technol., 22(3), 141-153 (2016). https://doi.org/10.7464/ksct.2016.22.3.141
  8. Niksa, S., Krishnakumar, B., and Ghoreishi, F., "Analytical Management of SCR Catalyst Lifetimes and Multipollutant Performance," J. Air Waste Manage. Assoc., 66(2), 215-223 (2016). https://doi.org/10.1080/10962247.2015.1107658
  9. Senior, C. L., "Oxidation of Mercury across Selective Catalytic Reduction Catalysts in Coal-Fired Power Plants," J. Air Waste Manage. Assoc., 56(1), 23-31 (2006). https://doi.org/10.1080/10473289.2006.10464437
  10. Negreira, A. S., and Wilcox, J., "DFT Study of Hg Oxidation across Vanadia-Titania SCR Catalyst under Flue Gas Conditions," J. Phys. Chem. C, 117(4), 1761-1772 (2013). https://doi.org/10.1021/jp310668j
  11. Stolle, R., Koeser, H., and Gutberlet, H., "Oxidation and Reduction of Mercury by SCR DeNOx Catalysts under Flue Gas Conditions in Coal Fired Power Plants," Appl. Catal. B, 144, 486-497 (2014). https://doi.org/10.1016/j.apcatb.2013.07.040
  12. Kim, M. H., Ham, S.-W, and Lee, J.-B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over CuCl2/TiO2-Based Catalysts in SCR Process," Appl. Catal. B, 99(1), 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032
  13. Lee, C. W., Srivastava, R. K., Ghorishi, S. B., Karwowski, J., Hastings, T. W., and Hirschi, J. C., "Pilot-Scale Study of the Effect of Selective Catalytic Reduction Catalyst on Mercury Speciation in Illinois and Powder River Basin Coal Combustion Flue Gases," J. Air Waste Manage. Assoc., 56(5), 643-649 (2006). https://doi.org/10.1080/10473289.2006.10464475
  14. Galbreath, K. C., and Zygarlicke, C. J., "Mercury Transformations in Coal Combustion Flue Gas," Fuel Process. Technol., 65-66, 289-310 (2000). https://doi.org/10.1016/S0378-3820(99)00102-2
  15. Srivastava, R. K., Lee, C. W., and Hirschi, J., "Evaluation of SCR Catalysts for Combined Control of NOx and Mercury," U.S. Environmental Protection Agency, Report # EPA-600/R-04/130 (2004).
  16. Serre, S. D., Lee, C. W., Chu, P., and Hastings, T. W., "Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor - The Effect of Coal Blending," Paper No. 83, 7th Power Plant Air Pollutant Control Mega Symposium 2008, Baltimore, MD (August 2008).
  17. Cao, Y., Chen, B., Wu, J., Cui, H., Smith, J., Chen, C.-K., Chu, P., and Pan, W.-P., "Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coal," Energy Fuels, 21(1), 145-156 (2007). https://doi.org/10.1021/ef0602426
  18. Kikkawa, H., Shimohira, W., Nagayasu, T., Kiyosawa, M., Nagai, Y., and Kagawa, S., "Highly-Efficient Removal of Toxic Trace Elements and Particulate Matter in Flue Gas Emitted from Coal-fired Power Plants by Air Quality Control System (AQCS)," Mitsubishi Heavy Industries Tech. Rev., 52(2), 89-96 (2015).
  19. Jimenez, A., "Mercury Oxidation Behavior of a New Advanced Selective Catalytic Reduction Catalyst Formulation," Electric Power Research Institute (EPRI), Report No. 1023398 (2011).
  20. Favale, A. C., Guglielmo, S., Jin, P., Nagai, Y., and Tyree, C. A., "An SCR Can Provide Mercury Removal Co-Benefits," Power, October 1 (2011).
  21. Shin, D., Kim, M. H., and Han, J. W., "Structure-Activity Relationship of VOx/TiO2 Catalysts for Mercury Oxidation: A DFT Study," Appl. Surf. Sci., 552, 149462 (2021). https://doi.org/10.1016/j.apsusc.2021.149462
  22. Brickett, L., and Lee, C. W., "Power Plant Evaluation of the Effect of Selective Catalytic Reduction on mercury," Electric Power Research Institute (EPRI), Report No. 1005400 (2002).
  23. Laudal, D. L., Thompson, J. S., Pavlish, J. H., Brickett, L. A., Chu, P., Srivastava, R. K., Lee, C. W., and Kilgroe, J. D., "Mercury Speciation at Power Plants Using SCR and SNCR Control Technologies," Electronic Martkets, 53, 16-22 (2003).
  24. O'Palko, A., "Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet Flue Gas Desulfurization System," Electric Power Research Institute (EPRI), Report No. 1021608 (2010).
  25. Laudal, D. L., Brown, T. D., and Nott, B. R., "Effects of Flue Gas Constituents on Mercury Speciation," Fuel Process. Technol., 65-66, 157-165 (2000). https://doi.org/10.1016/S0378-3820(99)00083-1
  26. Agarwal, H., Stenger, H. G., Wu, S., and Fan. Z., "Effects of H2O, SO2, and NO on Homogeneous Hg Oxidation by Cl2," Energy Fuels, 20(3), 1068-1075 (2006). https://doi.org/10.1021/ef050388p
  27. Hall, B., Schager, P., and Lindqvist, O., "Chemical Reactions of Mercury in Combustions Flue Gases," Water Air Soil Pollut., 56, 3-14 (1991). https://doi.org/10.1007/BF00342256
  28. Kiil, S., Nygaard, H., and Johnsson, J. E., "Simulation Studies of the Influence of HCl Absorption on the Performance of a Wet Flue Gas Desulphurisation Pilot Plant," Chem. Eng. Sci., 57(3), 347-354 (2002). https://doi.org/10.1016/S0009-2509(01)00387-6