DOI QR코드

DOI QR Code

ON SOME COPSON-TYPE INTEGRAL INEQUALITY

  • Benaissa, Bouharket (Faculty of Material Sciences, Laboratory of Informatics and Mathematics, University of Tiaret)
  • Received : 2020.04.08
  • Accepted : 2021.06.24
  • Published : 2021.09.30

Abstract

In this paper, we give some new Copson-type integral inequality with a sharp constant.

Keywords

Acknowledgement

This work was supported by DG-RSDT. Algeria.

References

  1. B. Benaissa, On the Reverse Minkowski's Integral Inequality, Kragujevac. J. Math. Vol.46 (3) (2022), 407-416. https://doi.org/10.46793/KgJMat2203.407B
  2. B. Benaissa, H. Budak, More on reverse of Holder's integral inequality, Korean J. Math. 28 (1) (2020), 9-15. doi:10.11568/kjm.2020.28.1.9
  3. E.T. Copson, Note on series of positive terms, Journal London Math. Soc. 2 (1927), 9-12 https://doi.org/10.1112/jlms/s1-2.1.9
  4. E.T. Copson, Note on series of positive terms, Journal London Math. Soc. 3 (1928), 49-51. https://doi.org/10.1112/jlms/s1-3.1.49
  5. E.T. Copson, Some Integral Inequalities, Proceedings of the Royal Society of Edinburgh,75A, 13, (1975/76)
  6. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, (1952).
  7. G. H. Hardy, Notes on a theorem of Hilbert, Math. Z, 6 (1920), 314-317. https://doi.org/10.1007/BF01199965
  8. K. Khatri, V.N. Mishra, Degree of Approximation by the (T.E1) Means of Conjugate Series of Fourier Series in the Holder Metric, Iran. J. Sci. Technol. Trans. A Sci. 43 (4) (2019), 1591-1599. DOI:10.1007/s40995-017-0272-3.
  9. V.N. Mishra, K. Khatri, Degree of approximation of functions f ∈ Hw class by the (Np.E1) means in the Holder metric, Int. J. Math. Math. Sci, (2014), ID 837408, 9 pages
  10. V.N. Mishra, L.N. Mishra, Trigonometric Approximation of Signals (Functions) in Lp-norm, Int. J. Contemp. Math. Sci. 7 (19) (2012), 909-918.